• Title, Summary, Keyword: Cholesterol Removal

Search Result 61, Processing Time 0.042 seconds

Recycling of $\beta$-Cyclodextrin Used for Cholesterol Removal from Egg Yolk (난황의 콜레스테롤 제거에 사용한 $\beta$-Cyclodextrin의 재활용)

  • 유익종;최성유;박우문;전기홍
    • Food Science of Animal Resources
    • /
    • v.20 no.1
    • /
    • pp.30-35
    • /
    • 2000
  • The method used to remove cholesterol from egg by using $beta$-cyclodextrin was relatively stable and efficient. The aim of this study was to cost down by recycling $\beta$-cyclodextrin used to remove cholesterol from egg yolk because $\beta$-cyclodextrin was expensive. The solvents used to separate $\beta$-cyclodextrin from $\beta$-cyclodextrin complex containing egg yolk cholesterol were butanol, chloroform, ether, hexane, methanol, 2-propanol and their mixture. The ratio of solvent and complex varied from 2 : 1 to 10 : 1. The condition of mixing time and temperature varied from 30 to 60$^{\circ}C$ and from 10 minutes to 3 hours to remove cholesterol from $\beta$-cyclodextrin complex. When the ratio of choloroform and methanol was 1 : 1, the removal efficiency of cholesterol was 98.8%. The efficiency of cholesterol removal was improved when the ratio of solvent : complex increased to 4 : 1. When mixing time and temperature was up to for 1hr, at 50$^{\circ}C$ respectively, the efficiency of cholesterol removal improved to 99%. It concluded that the efficiency of cholesterol removal of 50% renewed one contained $\beta$-cyclodextrin were 81.1% while the cholesterol removal efficiency of 100% renewed $\beta$-cyclodextrin was 24% if cholesterol removal efficiency of new $\beta$-cyclodextrin were 100%.

  • PDF

Crosslinking of $\beta$-Cyclodextrin on Cholesterol Removal from Milk

  • Kim, S.H.;Ahn, J.;Kwak, H.S.
    • Archives of Pharmacal Research
    • /
    • v.27 no.11
    • /
    • pp.1183-1187
    • /
    • 2004
  • This study was designed to develop crosslinking of $\beta$-cyclodextrin ($\beta$-CD), and determine the optimum conditions of different factors (mixing time, mixing temperature, and mixing speed) on cholesterol reduction from milk. Crosslinked $\beta$-CD was prepared with epichlorohydrin. When milk was treated with different conditions, the cholesterol removal rate was in the range of 79.4 to 83.3% with 1 % crosslinked $\beta$-CD addition, which were not significantly different among treatments. After cholesterol removal from milk, the used crosslinked $\beta$-CD was washed for cholesterol dissociation and reused. For recycling study, the cholesterol removal rate in first trial was 81.8%, which was mostly same as that using new crosslinked $\beta$-CD. With five trials repeatedly using the same sample, the mean cholesterol removal rate was 81.2%. The present study indicated that the optimum conditions on cholesterol removal using crosslinked $\beta$-CD were 10 min mixing with 400 rpm speed at $5^{\circ}C$ with about 80% cholesterol removal. In addition, crosslinked $\beta$-CD resulted in the effective recycling efficiency almost 100%.

Cholesterol Removal of Milk and Dairy Products using ${\beta}-Cyclodextrin$ (${\beta}-Cyclodextrin$을 이용한 우유 및 유제품의 콜레스테롤 제거)

  • Han, Eun-Mi;Kim, Song-Hee;Kwak, Hae-Soo
    • Food Science of Animal Resources
    • /
    • v.26 no.4
    • /
    • pp.540-547
    • /
    • 2006
  • This review highlights areas of interest in the cholesterol removal of milk and dairy products. The demand for cholesterol removal has increased due to consumer demand for cholesterol-reduced products. At present the best method for producing without changing flavor, taste and texture of the products is entrapping cholesterol by ${\beta}-cyclodextrin({\beta}-CD)$. Especially, crosslinking of ${\beta}-CD$ is important due to recycling that could be separated the ${\beta}-CD$ from treated cream or milk. The recycling can be up to 10 times with keeping the rate of cholesterol removal. Various functional milk and dairy products can be produced in this manner. This report reviews general information including methods of cholesterol removal, crosslinking of ${\beta}-CD$, and recycling of the ${\beta}-CD$ in milk and dairy products.

Cholesterol Removal from Homogenized Milk with Crosslinked β-cyclodextrin by Adipic Acid

  • Han, Eun-Mi;Kim, Song-Hee;Ahn, Joungjwa;Kwak, Hae-Soo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.12
    • /
    • pp.1794-1799
    • /
    • 2005
  • The present study was carried out to develop crosslinking of $\beta$-cyclodextrin ($\beta$-CD) using adipic acid, and to determine the optimum conditions of different factors ($\beta$-CD concentration, mixing temperature, mixing time and mixing speed) on cholesterol reduction from homogenized milk. Crosslinked $\beta$-CD was prepared with adipic acid. When the milk was treated with different conditions, the cholesterol removal rate was in the range of 92.1 to 93.1% with 1% $\beta$-CD addition, which were not significantly different among treatments. After cholesterol removal from milk, the used crosslinked $\beta$-CD was washed for cholesterol dissociation and reused. For recycling study, the cholesterol removal rate in the first trial was 92.5%, which was mostly same as that using new crosslinked $\beta$-CD. With repeated ten time trials using same sample, 81.4% of cholesterol was removed from milk. Therefore, the present study indicated that the optimum conditions for cholesterol removal using crosslinked $\beta$-CD were 1% $\beta$-CD addition and 10 min mixing with 400 rpm speed at 5$^{\circ}C$ with over 90% cholesterol removal. In addition, crosslinked $\beta$-CD made by adipic acid resulted in the effective recycling efficiency.

Cholesterol Removal from Whole Egg by Crosslinked β-Cyclodextrin

  • Jeong, H.J.;Sun, H.;Chogsom, C.;Kwak, H.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.4
    • /
    • pp.537-542
    • /
    • 2014
  • This study was carried out to optimize cholesterol removal in whole egg using crosslinked ${\beta}$-cyclodextrin (${\beta}$-CD) and to recycle the ${\beta}$-CD. Various factors for optimizing conditions were concentration of the ${\beta}$-CD, mixing temperature, mixing time, mixing speed and centrifugal speed. In the result of this study, the optimum conditions of cholesterol removal were 25% crosslinked ${\beta}$-CD, $40^{\circ}C$ mixing temperature, 30 min mixing time, 1,200 rpm mixing speed and $2,810{\times}g$ centrifugal speed. The recycling was repeated five times. The cholesterol removal was 92.76% when treated with the optimum conditions. After determining the optimum conditions, the recyclable yields of the crosslinked ${\beta}$-CD ranged from 86.66% to 87.60% in the recycling and the percentage of cholesterol removal was over 80% until third recycling. However, the cholesterol removal efficiency was decreased when the number of repeated recycling was increased. Based on the result of this study, it was concluded that the crosslinked ${\beta}$-CD was efficient for cholesterol removal in whole egg, and recycling is possible for only limited repeating times due to the interaction of the ${\beta}$-CD and egg protein.

Optimization of Cholesterol Removal Conditions from Homogenized Milk by Treatment with Saponin

  • Chang, E.J.;Oh, H.I.;Kwak, H.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.6
    • /
    • pp.844-849
    • /
    • 2001
  • This study was carried out to determine the optimum conditions for cholesterol removal from homogenized milk by treatment with saponin using a response surface methodology (RSM). The effects of temperature, reaction time, and amounts of celite or saponin added on cholesterol removal from milk were investigated. The level of cholesterol removal from milk increased with saponin concentration and varied from 57.4 to 73.3%. The optimum reaction time, amount of celite addition determined by a partial differentiation of the model equation, and amount of saponin addition were 30min, 0.95% and 1.5%, respectively. Under these conditions, the predicted cholesterol removal by RSM was estimated to be 73.4%. The experimental removal value was 73.7%. Thus, there was no appreciable difference between the experimental value and the predicted value based on RSM.

Optimization of Cholesterol Removal by Crosslinked ${\beta}$-Cyclodextrin in Egg Yolk

  • Jung, Tae-Hee;Park, Heung-Sik;Kwak, Hae-Soo
    • Food Science and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.793-797
    • /
    • 2005
  • Optimum conditions for cholesterol removal in egg yolk were evaluated based on ratio of egg yolk-to-water, crosslinked ${\beta}$-cyclodextrin (${\beta}$-CD) concentration, and mixing temperature, time, and speed by adding crosslinked ${\beta}$-CD treated with adipic acid. Cholesterol removal in egg yolk-water mixture increased with increasing ${\beta}$-CD level (10-25%). About 95% was removed by 25% ${\beta}$-CD at 1:1 ratio of egg yolk-to-water and 800 rpm mixing at $40^{\circ}C$ for 30 min. In recycling study, removal rates were measured using ten times recycled crosslinked ${\beta}$-CD in egg yolk, and 85% cholesterol removal was observed with eight times reuse. These results indicated that over 90% cholesterol was removed at 1:1 ratio of egg yolk-to-water, 20% crosslinked ${\beta}$-CD addition, and 30 min mixing with 600 rpm at $40^{\circ}C$.

Low Cholesterol Mozzarella Cheese Obtained from Homogenized and β-Cyclodextrin-Treated Milk

  • Kwak, H.S.;Nam, C.G.;Ahn, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.2
    • /
    • pp.268-275
    • /
    • 2001
  • The effects of homogenization conditions and $\beta$-cyclodextrin ($\beta$-CD) on cholesterol removal of Mozzarella cheese were examined. The homogenization pressure influenced markedly on the cholesterol removal in milk and, 75.64% of cholesterol, the highest rate, was removed at $70.0kg/cm^2$. In addition, an increase in temperature resulted in an increase of cholesterol removal in the range of 71.75 to 78.22%. Among different concentrations of $\beta$-CD addition, 1.0% showed 78.21% of cholesterol removal. Therefore, cholesterol-reduced Mozzarella cheese was made by cheese milk treated with 70 $70.0kg/cm^2$ homogenization at $70^{\circ}C$ and 1% $\beta$-CD addition for a subsequent study. The cholesterol reduction of cholesterol-reduced Mozzarella cheese was 63.92%. Meltability, stretchability and oiling-off in cholesterol-reduced cheese were significantly lower than those in control. Hardness, gumminess and chewiness were significantly reduced, while cohesiveness and elasticity increased. Appearance and flavor of the cheese were superior, but texture inferior to the control.

Morphological Change of Crosslinked ${\beta}$-Cyclodextrin after Recycling

  • Han, Eun-Mi;Kim, Song-Hee;Kim, Ki-Woo;Kwak, Hae-Soo
    • Journal of Dairy Science and Biotechnology
    • /
    • v.25 no.1
    • /
    • pp.9-13
    • /
    • 2007
  • The present study was carried out to examine the effect of crosslinked ${\beta}$-cyclodextrin(${\beta}$-CD) made by adipic acid on cholesterol removal rate and find the structural change after recycling on SEM observation. The size reduction and morphological changes were found during the recycling process and the profound changes were observed at 8th time reuse. After cholesterol removal in milk, the used crosslinked ${\beta}$-CD was washed for cholesterol dissociation and reused. In recycling study, the cholesterol removal rate at first trial was 92.5% in milk, which was mostly same as that using new crosslinked ${\beta}$-CD(92.4%). With repeated 10th reuse of crosslinked ${\beta}$-CD resulted in 81.4% of cholesterol removal in milk. Similar trend was found in cream and cholesterol removal was 91.5% at 1st trial and 83.4% at 10th trial. In both milk and cream samples, the removal rate at 1st reuse was not significantly different from that at 6th reuse(p>0.05). The present study indicated that crosslinked ${\beta}$-CD made by adipic acid resulted in the effective recycling efficiency, especially up to 6th reuse and morphological modifications were not distinguishable up to 8th reuse.

  • PDF

Immobilized ${\beta}-Cyclodextrin$ as a Simple and Recyclable Method for Cholesterol Removal in Milk

  • Kwak, H.-S.;Kim, S.-H.;Kim, J.-H.;Choi, H.-J.;Kang, J.
    • Archives of Pharmacal Research
    • /
    • v.27 no.8
    • /
    • pp.873-877
    • /
    • 2004
  • This study was designed to determine the optimum conditions of three different factors (mixing time, mixing temperature, and tube size) in reduction of cholesterol in milk using immobilized $\beta$-CD beads. Immobilized $\beta$-CD glass beads were prepared at different conditions of silaniza-tion and $\beta$-CD immobilization reactions. In result, the glass beads (diameter 1 mm) at 20 mM 3-isocyanatopropyltriethoxysilane and 30 mM $\beta$-CD without base showed the highest choles-terol removal rate as 41%. Using above immobilized $\beta$-CD glass beads, the cholesterol removal rate was 40.2% with 6 h of mixing time in 7 mm diameter tube at $10^{\circ}C$. After choles-terol removal from milk, the glass beads were washed for cholesterol dissociation and reused. In recycling study, the cholesterol removal rate was 41%, which was mostly same as that using new glass beads. These results indicated that cholesterol removal rate was about 40% with $\beta$-CD immobilized glass beads, however, the recycling efficiency was almost 100%.