• Title, Summary, Keyword: Chicken

Search Result 5,816, Processing Time 0.062 seconds

Flavour Chemistry of Chicken Meat: A Review

  • Jayasena, Dinesh D.;Ahn, Dong Uk;Nam, Ki Chang;Jo, Cheorun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.5
    • /
    • pp.732-742
    • /
    • 2013
  • Flavour comprises mainly of taste and aroma and is involved in consumers' meat-buying behavior and preferences. Chicken meat flavour is supposed to be affected by a number of ante- and post-mortem factors, including breed, diet, post-mortem ageing, method of cooking, etc. Additionally, chicken meat is more susceptible to quality deterioration mainly due to lipid oxidation with resulting off-flavours. Therefore, the intent of this paper is to highlight the mechanisms and chemical compounds responsible for chicken meat flavour and off-flavour development to help producers in producing the most flavourful and consistent product possible. Chicken meat flavour is thermally derived and the Maillard reaction, thermal degradation of lipids, and interaction between these 2 reactions are mainly responsible for the generation of flavour and aroma compounds. The reaction of cysteine and sugar can lead to characteristic meat flavour specially for chicken and pork. Volatile compounds including 2-methyl-3-furanthiol, 2-furfurylthiol, methionol, 2,4,5-trimethyl-thiazole, nonanol, 2-trans-nonenal, and other compounds have been identified as important for the flavour of chicken. However 2-methyl-3-furanthiol is considered as the most vital chemical compound for chicken flavour development. In addition, a large number of heterocyclic compounds are formed when higher temperature and low moisture conditions are used during certain cooking methods of chicken meat such as roasting, grilling, frying or pressure cooking compared to boiled chicken meat. Major volatile compounds responsible for fried chicken are 3,5-dimethyl-1,2,4-trithiolanes, 2,4,6-trimethylperhydro-1,3,5-dithiazines, 3,5-diisobutyl-1,2,4-trithiolane, 3-methyl-5-butyl-1,2,4-trithiolane, 3-methyl-5-pentyl-1,2,4-trithiolane, 2,4-decadienal and trans-4,5-epoxy-trans-2-decenal. Alkylpyrazines were reported in the flavours of fried chicken and roasted chicken but not in chicken broth. The main reason for flavour deterioration and formation of undesirable "warmed over flavour" in chicken meat products are supposed to be the lack of ${\alpha}$-tocopherol in chicken meat.

An Analysis on Consumers' Behavior of Chicken Meat at the Cafeterias of University: Focusing on Comparison between Food Safety Certified Chicken Meat and Environment-friendly Chicken Meat (대학교 급식 소비자들의 닭고기 소비행태에 관한 연구 : 식품안전인증(HACCP)과 친환경인증 비교를 중심으로)

  • Han, Jae-Han;Kim, Soung-Hun
    • Korean Journal of Organic Agriculture
    • /
    • v.22 no.2
    • /
    • pp.219-228
    • /
    • 2014
  • Even though consumers' concern about food-safety certified or environment-friendly chicken meat becomes one of the main issues of food consumption in Korea, university students' interest about food-safety certified or environment-friendly chicken meat was not often discussed. We realized that the cafeteria of university is one of the largest consumption points for the chicken meat of university students, and tried to analyze university students' consumption of food-safety certified or environment-friendly chicken meat at the cafeterias of university. The object of this paper is to conduct survey analysis about the students' behavior for consumption of food-safety certified or environment-friendly chicken meat at the cafeterias of university and to measure WTP(Willingness-to-pay) for the food cooked with food-safety certified or environment-friendly chicken meat. The results present that most of students show higher preference of environment-friendly chicken meat than food-safety certified chicken meat, and that they can pay 1,329.9 Korean won for food cooked with environment-friendly chicken meat.

Comparative Analysis of Nkx2-5/GATA4/TBX5 Expression in Chicken, Quail and Chicken-quail Hybrids during the Early Stage of Cardiac Development in Embryos

  • Ban, Qian;Liu, Xiaojun;Hui, Wenqiao;Chen, Danying;Zhao, Zongsheng;Jia, Bin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.4
    • /
    • pp.476-482
    • /
    • 2013
  • The present study makes an investigation into expression of genes related to cardiac development in chicken, quail and chicken-quail hybrids during the early stage of embryogenesis. Real-time PCR was used to detect mRNA expressions of Nkx2-5, GATA4 and TBX5 in the heart of chicken, quail and chicken-quail hybrids embryos during the 3rd to 7th days of incubation. Results showed that NKX2-5 mRNA displayed a similar expression trend in chicken, quail and chicken-quail hybrids. The initial and highest expression of Nkx2-5 was focused on the 3rd day of incubation, then it declined till 5th day of incubation, thereafter, it fluctuated. Expression of Nkx2-5 gene in quail was significantly higher than in chicken and chicken-quail hybrids, and no significant difference was observed between the two latter species. GATA4 mRNA showed a similar expression trend between chicken and quail, which displayed a steady increase from 3rd to 6th d, then, the expression level decreased. However, GATA4 mRNA expression in chicken-quail hybrids was significantly higher than that in chicken and quail from 3rd to 5th d (p<0.01), but significantly lower than that in chicken and quail during the later stage of the experiment (p<0.05), due to the dramatic drop from 5th d onwards (p<0.01). TBX5 mRNA expression in chicken and quail showed the same trend as GATA4 expressed in the two species. Furthermore, TBX5 expression in chicken-quail hybrids was significantly higher than that in chicken and quail during the whole course of experiment, although relatively lower TBX5 expression was detected in the early stage. In conclusion, Nkx2-5, GATA4 and TBX5 genes showed dynamic changes during the process of cardiac development in chicken, quail and their hybrids embryos. In addition, the expression trend in chicken was similar to that in quail, and there was no significant difference for gene expression level, except NKX2-5. However, expression of these genes in chicken-quail hybrids was significantly different from their parents, the difference mechanism needs to be further explored.

Differential Embryo Development among Tibetan Chicken, DRW and Shouguang Chicken Exposed to Chronic Hypoxia

  • Li, Mei;Zhao, Chun-Jiang;Wu, Chang-Xin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.3
    • /
    • pp.336-342
    • /
    • 2009
  • Avian embryos at high altitude are independent of maternal protection against hypoxia, which is contrary to mammals. It is well known that chronic hypoxic exposure at key points can significantly impact on avian development. Tibetan Chicken, a Chinese indigenous breed, living in Tibetan areas with an altitude of 2.2 to 4.1 thousand meters, has an adaptive mechanism to hypoxia. In the present study, fertilized eggs of Tibetan Chicken were incubated under 13% and 21% oxygen concentration. Two lowland chicken breeds, Shouguang Chicken, an indigenous chicken breed in Shandong Province of China, and Dwarf Recessive White Chicken, an imported breed in Beijing, were used as control groups. The embryo mass and some organs such as brain, heart, liver, stomach and eye weight in the three species were measured at Hamburger-Hamilton stage 39, 41, 43 and 45 under hypoxic and normal conditions. The results showed that in hypoxia Tibetan Chicken significantly differed from the two lowland chicken breeds in embryo mass at Hamburger-Hamilton stage 41, 43 and 45 (p<0.01). In particular, Dwarf Recessive White Chicken and Shouguang Chicken showed retarded growth in hypoxic incubation (p<0.01), whereas Tibetan Chicken showed no significant difference between hypoxic and normal conditions (p>0.05). In addition, heart and the other organs showed different susceptibility to hypoxia at the studied stages. In conclusion, chronic hypoxia induced a change in the embryo development of the three different species and Tibetan Chicken showed adaptation to hypoxia. Of note, the embryo developmental physiology of Tibetan Chicken in response to hypoxia will shed light on the process of physiological acclimation or evolutionary adaptation as well as the study of clinical disease.

Differentiation of Deboned Fresh Chicken Thigh Meat from the Frozen-Thawed One Processed with Different Deboning Conditions

  • Bae, Young Sik;Lee, Jae Cheong;Jung, Samooel;Kim, Hyun-Joo;Jeon, Seung Yeop;Park, Do Hee;Lee, Soo-Kee;Jo, Cheorun
    • Food Science of Animal Resources
    • /
    • v.34 no.1
    • /
    • pp.73-79
    • /
    • 2014
  • This study was performed to evaluate the quality characteristics of three deboned categories of chicken thigh meat: one which was slaughtered and deboned in the same plant (fresh); one which was slaughtered, deboned, frozen, and thawed in the same plant (frozen-thawed); and the last which was slaughtered in a plant, deboned in a different plant, but then transferred to the original plant (fresh-outside). Surface color, drip loss, 2-thiobarbituric acid reactive substances (TBARS) value, sensory evaluation, and total aerobic bacterial counts of the chicken samples were determined. Moreover, the torrymeter was used to measure the differences in freshness of the chicken meat. The surface color and the TBARS values did not show significant differences among the three categories. However, the total aerobic bacterial counts of fresh-outside and frozen-thawed chicken meat were significantly higher than the fresh chicken meat on the first storage day, and the drip loss of frozen-thawed chicken meat was significantly higher than the fresh-outside and fresh chicken meat. In addition, the sensory evaluation of frozen-thawed chicken meat was significantly lower than the fresh-outside and fresh chicken meat. Torrymeter values were higher in fresh chicken meat than fresh-outside and frozen-thawed chicken meat during the storage period. These results indicate that the quality of frozen-thawed chicken meat is comparatively lower than the fresh chicken meat, and the torrymeter values can accurately differentiate the fresh-outside and frozen-thawed chicken meat from the fresh ones.