• Title/Summary/Keyword: Chamber

Search Result 7,298, Processing Time 0.153 seconds

A Study on the Combustion Characteristics of Lean Mixture by Radicals Induced Injection in a Constant Volume Combustor (1) (정적연소기에서 라디칼 유도분사를 이용한 희박혼합기의 연소특성에 관한 연구 (1))

  • 박종상;이태원;하종률;정성식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.45-53
    • /
    • 2004
  • An experimental study was carried out to obtain the fundamental data about the effects of radicals induced injection on premixture combustion. A constant volume combustor divided to the sub-chamber and the main chamber was used. The volume of the sub-chamber is set up to occupy less than 1.5% of that of whole combustion chamber. Radial twelve narrow passage holes are arranged between the main chamber and the sub-chamber. The products including radicals generated by spark ignition in the sub-chamber will derive the simultaneous multi-point ignition in the main chamber. While the equivalence ratio of pre-mixture in the main chamber and the sub-chamber is uniform. We have examined the effects of the sub-chamber volume, the diameter of passage hole, and the equivalence ratio on the combustion characteristics by means of burning pressure measurement and flame visualization. In the case of radical ignition method(RI), the overall turning time including the ignition delay became very short and the maximum burning pressure was slightly increased in comparison with those of the conventional spark ignition method(SI), that is, single chamber combustion without the sub-chamber. The combustible lean limit by RI method is extended to more ER=0.25 than that by SI method. Therefore the decrease of every emission including NOx and the improvement of fuel consumption is anticipated due to lean burn.

STUDY ON PRE-MIXTURE COMBUSTION IN A SUB-CHAMBER TYPE CVC WITH MULTIPLE PASSAGE HOLES

  • PARK J. S.;YEOM J. K.;LEE T. W.;HN J. Y.;CHUNG S. S.
    • International Journal of Automotive Technology
    • /
    • v.7 no.1
    • /
    • pp.17-23
    • /
    • 2006
  • An experimental study was carried out to obtain the fundamental data about the effect of sub-chamber on pre-mixture combustion. A eve (constant volume combustor) divided into a sub-chamber and a main chamber was used in this experiment. The volume of the sub-chamber was varid trom $0.45\%$ to $1.4\%$ about the whole combustion chamber. The sub-chamber has twelve narrow radial passage holes and a spark plug to ignite the pre-mixture. As the ignition occurs in the sub-chamber by a spark discharge, burned and unburned gas including a great number of radicals is injected into the main chamber, then the multi-point ignition occurs in the main chamber. The combustion pressure is measured to calculate the burning velocity mainly as a function of the sub-chamber volume, the diameter of the passage holes, and the equivalence ratio. In the case of RI (radical ignition) methods, the overall burning time became very short and the maximum burning pressure was slightly increased as compared with that of SI (spark ignition) method. The optimum design value of the sub-chamber is near 0.11 $cm^{-l}$ in the ratio of total area of holes to the sub-chamber volume.

Analysis of Pressure Fluctuations in a Thrust Chamber with Chamber Pressure Variation (연소실 압력 변화에 따른 연소기 압력 섭동 분석)

  • Ahn, Kyu-Bok;Lim, Byoung-Jik;Kim, Jong-Gyu;Han, Yeoung-Min;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.5
    • /
    • pp.8-14
    • /
    • 2010
  • For the development of a liquid rocket engine, hot-firing tests of a regeneratively cooled thrust chamber were performed at chamber pressures of approximately 30 and 60 bars. In the paper, pressure fluctuation data, which were obtained from the dynamic pressure transducers installed in propellant manifolds and combustion chamber, were analyzed. Compared to the data at chamber pressure of 60 bar, the results at chamber pressure of 30 bar showed low-frequency oscillations around 150 Hz in the combustion chamber. The low-frequency waves in the combustion chamber were coupled with those in the manifolds. However, the RMS values of the chamber pressure fluctuations at chamber pressure of 30 bar were only 0.8% of the chamber pressures. Thus, it can be inferred that the thrust chamber operates in the stability boundary even at low chamber pressure.

Vibration Isolation System of a Large Reverberation Chamber (대형 잔향실의 방진 설계 및 검증)

  • 김영기;김홍배;이동우;우성현;문상무
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • /
    • pp.1026-1031
    • /
    • 2003
  • A vibration isolation system fur a large reverberation chamber (1,228㎥, 1,000ton) has been installed. The reverberation chamber generates loud noise and induces high level of vibration to perform spacecraft acoustic environmental tests. The isolation system prevents vibration transfer from the chamber to enclosure buildings. This paper describes logical design process and commissioning experiments of the system. Design criteria have been induced from rigid body model of the chamber. Finite element model has been employed to select the characteristics of rubber pads. A total of 21 rubber pads have been installed between the chamber and supporting pedestals. A sand bag of 800kg was dropped on the chamber floor to measure the natural frequency of the isolation system. Absolute transmissibility has been measured while generating 145㏈ in the chamber. The natural frequency of the chamber is 10.5㎐, which is 80% of estimated value. Overall transmissibility at working frequency range (25㎐-10,000㎐) is less than -6㏈.

  • PDF

A Study on the Rapid Bulk Combustion of Premixture Using the Radical Seeding

  • Lee, Myung-Jun;Kim, Jong-Youl;Park, Jong-Sang;Yeom, Jeong-Kuk;Chung, Sung-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1623-1629
    • /
    • 2004
  • The objective of this study is the rapid bulk combustion of mixture in a constant volume chamber with a tiny sub-chamber. Some narrow passage holes were arranged to induce simultaneous multi-point ignition in the main chamber by jet of burned and unburned gases including radicals from the sub-chamber, and the equivalence ratios of pre-mixture in the main chamber and the sub-chamber were the same. The principal factors of the Radical Induced Auto-Ignition (RIAI) method are the diameter of the passage holes and the volume of sub-chamber. The relationship between the sub-chamber and diameter of passage hole was represented by the ratios of sub-chamber volume to passage hole volume. The ratios are non-dimensional coefficients for sub-chamber characteristics. As a result, the RIAI method reduced the combustion period, which expanded the lean limit in comparison with SI method.

The Effects of Chamber Temperature and Pressure on a GDI Spray Characteristics in a Constant Volume Chamber

  • Oh, Seun-Sung;Kim, Seong-Soo
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.186-192
    • /
    • 2014
  • The spray structures under the stratified and homogeneous charge condition of a gasoline direct injection were investigated in a visualized constant volume chamber. The chamber pressure was controlled from 0.1 MPa to 0.9 MPa by the high pressure nitrogen and the chamber temperatures of $25^{\circ}C$, $60^{\circ}C$ and $80^{\circ}C$ were controlled by the band type heater. The fuel, iso-octane was injected by a 6-hole injector with the pressures of 7 MPa and 12 MPa. From the experiments results, it is confirmed that at lower chamber pressure, the penetration length and spray angle are mainly affected by the chamber temperature with the vaporization of the fuel droplets and generated vortices at the end region of the spray. And at higher chamber pressure, the penetration lengths at the end of the injection were about 50~60% of that at lower chamber pressure regardless of the chamber temperature and the effect of fuel injection pressure is larger than that of the chamber temperature which results from larger penetration lengths at higher fuel injection pressure than at lower fuel injection pressure regardless of the chamber temperatures.

The Effect of High Pressure Chamber's Shape on the Characteristics of Annular Jet Pump (고압실 형상에 따른 환형 제트펌프의 특성)

  • 권오붕
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.4
    • /
    • pp.428-434
    • /
    • 1999
  • Experimental studies on the characteristics of annular jet pump were carried out in this paper. Jet pump can be used widely for the transportation of solid materials, farm produce and fishes. The effects of high pressure chamber on the characteristics of annular jet pump were sought in this paper. Experiments were done for three shapes of high pressure chamber, and for several lengths of the high pressure chamber. Three types of the high pressure chamber's entrances($90^{\circ}$ single inflow, $45^{\circ}$single inflow, and $45^{\circ}$ double inflow) were tested. Water was used for both the primary fluid and secondary fluid. The results obtained in this study are as follows; $45^{\circ}$double inflow type is the most effective among the tested three types of the high pressure chamber's entrances. The efficiency of jet pump with 400mm of high pressure chamber length is the highest among the chamber lengths tested in this study, thus indicating appropriate chamber length is required to get an efficient.

  • PDF

The Effect of Combustion Promotion in Constant Volume Combustion Chamber with Sub-chamber (부실붙이 정적연소실의 연소촉진 효과)

  • 이상준;김삼석;이종태;이성열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.3
    • /
    • pp.569-577
    • /
    • 1992
  • The effect of combustion promotion in a constant volume combustion chamber with sub- chamber located in the vicinity of spark plug, was analyzed for variables such as sub- chamber volume and diameter of orifice, and was also compared and evaluated with that of the chamber with sub-chamber which spark plug was located in the sub-chamber. Consequently, it was shown that decrease of duration of combustion in the latter case was larger than in the former case, but comparing by rate of overall combustion promotion that duration of combustion and pressure were both considered, the optimum configuration factor and the effect of combustion promotion were almost same in both cases.

The Effect of High Pressure Chamber's Shape on the Characteristics of Annular Jet Pump (고압실 형상에 따른 환형 제트펌프의 특성)

  • Kim, Myung Gwan;Kwon, Oh Boong
    • 유체기계공업학회:학술대회논문집
    • /
    • /
    • pp.75-81
    • /
    • 2000
  • Experimental studies on the characteristics of annular jet pump were carried out in this paper. The effects of high pressure chamber on the characteristics of annular jet pump were sought in this paper. Experiments were done for three shapes of high pressure chamber, and for several lengths of the high pressure chamber. Three types of the high pressure chamber's entrances($90^{\circ}$ single inflow, $45^{\circ}$ single inflow, and $45^{\circ}$ double inflow) were tested. Water was used for both the primary fluid and secondary fluid. The results obtained in this study are as follows; $45^{\circ}$ double inflow type is the most effective among the tested three types of the high pressure chamber's entrances. The efficiency of jet pump with 400mm of high pressure chamber length is the highest among the chamber lengths tested in this study, thus indicating appropriate chamber length is required to get an efficient jet pump.

  • PDF

Combustion Characteristics of Stratified Mixture in a Constant Volume Combustion Chamber with Sub-chamber( I ) (부실식 정적연소실내 층상혼합기의 연소특성( I ))

  • Kim, B.S.;Kwon, C.H.;Ryu, J.I.;Ryu, J.I.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.1
    • /
    • pp.65-75
    • /
    • 1995
  • The present study was investigated combustion characteristics of methane-air mixtures at stratified charge in a constant volume combustion chamber. The results indicated that even the vety lean mixture, which is normally not flammable in single chamber type, could be burned within. a comparatively short time by using sub-chamber with stratified charge method. And the lean inflammability limit of mixture in a main chamber was about ($\phi_m$cr=O.46, when the equivalence ratio of a sub-chamber was $\phi_s$= 1.0. Initial time of pressure increase and total burning times were decreased and maximum combustion pressure. was increased as the equivalence ratio of both sub and main chamber approached unity. Specifically, initial time of pressure increase and total burning times were greatly affected rather by. the equivalence ratio of sub-chamber than that of main chamber. The maximum combustion pressure was little affected if the total equivalence ratio lies in the same range.

  • PDF