• Title, Summary, Keyword: Carbon

Search Result 23,770, Processing Time 0.074 seconds

Additive Effect in the Preparation of Carbon-slurry Fuel (Carbon-slurry 연료의 제조에 있어서 첨가제의 효과)

  • Cho, Min-Ho;Lee, Dae-Yeop;Han, Jeong-Sik;Lee, Ik-Mo
    • Applied Chemistry for Engineering
    • /
    • v.18 no.1
    • /
    • pp.64-70
    • /
    • 2007
  • Preparation and characterization of carbon-slurry fuel with high dispersion have been carried out. Carbon-slurry fuel was obtained by mixing Jet A-1 liquid fuel with appropriate carbon powders and additives. Dispersion of carbon in Jet A-1 was affected by various factors such as mixing temperature, characteristics of carbon powders, and type and amount of additives. Among these factors, the stability of the slurry fuel was most dependent on the type of additive. A variety of additives such as anionic, cationic, and nonionic additives was tested for the dispersion of carbon in Jet A-1. It was found that anionic additives based on sodium salts showed the highest dispersion of carbon-slurry fuels. The degree of dispersion could be monitored by measuring the luminosity.

Effects of oil absorption on the wear behaviors of carbon/epoxy woven composites

  • Lee, Jae-H.;Lee, Jae-S.;Rhee, Kyong-Y.
    • Carbon letters
    • /
    • v.12 no.4
    • /
    • pp.249-251
    • /
    • 2011
  • Carbon/epoxy woven composites are prominent wear-resistant materials due to the strength, stiffness, and thermal conductivity of carbon fabric. In this study, the effect of oilabsorption on the wear behaviors of carbon/epoxy woven composites was investigated. Wear tests were performed on dry and fully oil-absorbed carbon/epoxy woven composites. The worn surfaces of the test specimens were examined via scanning electron microscopy to investigate the wear mechanisms of oil-absorbed carbon/epoxy woven composites. It was found that the oil absorption rate was 0.14% when the carbon/epoxy woven composites were fully saturated. In addition, the wear properties of the carbon/epoxy woven composites were found to be affected by oilabsorption. Specifically, the friction coefficients of dry and oil-absorbed carbon/epoxy woven composites were 0.25-0.30 and 0.55-0.6, respectively. The wear loss of the oilabsorbed carbon/epoxy woven composites was $3.52{\times}10^{-2}\;cm^3$, while that of the dry carbon/epoxy woven composites was $3.52{\times}10^{-2}\;cm^3$. SEM results revealed that the higher friction coefficient and wear loss of the oil-absorbed carbon/epoxy woven composites can be attributed to the existence of broken and randomly dispersed fibers due to the weak adhesion forces between the carbon fibers and the epoxy matrix.

A Novel Route to Realise High Degree of Graphitization in Carbon-carbon Composites Derived from Hard Carbons

  • Mathur, R.B.;Bahl, O.P.;Dhami, T.L.;Chauhan, S.K.
    • Carbon letters
    • /
    • v.4 no.3
    • /
    • pp.111-116
    • /
    • 2003
  • Carbon/carbon composites were developed using PAN based carbon fibres and phenolic resin as matrix in different volume fractions and heat treated to temperatures between $1000^{\circ}C$ to $2500^{\circ}C$. Although both the starting precursors are nongraphitizing hard carbons individually, their composites lead to very interesting properties e.g. x-ray diffractograms show the development of graphitic phase for composites having fibre volume fractions of 30~40%. Consequently the electrical resistivity of such composites reaches a value of $0.8\;m{\Omega}cm$, very close to highly graphitic material. However, it was found that by increasing the fibre volume fraction to 50~60%, the trend is reversed. Optical microscopy of the composites also reveals the development of strong columnar type microstructure at the fibre (matrix interface due to stress graphitization of the matrix. The study forcasts a unique possibility of producing high thermal conductivity carbon/carbon composites starting with carbon fibres in the chopped form only.

  • PDF

The effect of carbon content on hot cracking of low carbon steel weld (저탄소성 용접금속의 응고균열에 미치는 탄소함량의 영향)

  • ;;Masumoto, I.
    • Journal of Welding and Joining
    • /
    • v.6 no.4
    • /
    • pp.16-26
    • /
    • 1988
  • The effect of carbon content on hot cracking of welded carbon steel was investigated Eight steel plates whose carbon content range from 0.02 to 0.23 percent were welded by autogeous gas tungsten are process. Constant strain was applied to the hot crack test specimen under the strain rate of 0.15 mm per second during welding. The hot cracking susceptibility ws high in the rnage of 0.02-0.05 and 0.12-0.23 percent carbon contents. The critical carbon content immune to hot cracking is in the range from 0.07 to 0.12 percent carbon. By electron probe microanalyser, amanganese segregation was not seen significantly in the whole carbon range. But segregation of silicon was higher in the region of low carbon contents. However, sulphur was segregated remarkably in the region betwen 0.18 and 0.23 percent carbon by peritectic reaction. Very smal lamount of dnedritic structure was observed in the region from 0.02 to 0.05 percent carbon by peritectic reaction. Very small amount of dendritic structure was observed in the region from 0.02 to 0.05 percent carbon but the predominant solidification structure was smooth by cellular growth. The higher the carbon content is, the more the columnar dendritic structure was observed.

  • PDF

Carbon Fibers(III): Recent Technical and Patent Trends

  • Seo, Min-Kang;Park, Sang-Hee;Kang, Shin-Jae;Park, Soo-Jin
    • Carbon letters
    • /
    • v.10 no.1
    • /
    • pp.43-51
    • /
    • 2009
  • Carbon fibers are a new breed of high-strength materials. The existence of carbon fiber came into being in 1879 when Edison took out a patent for the manufacture of carbon filaments suitable for use in electric lamps. However, it was in the early 1960s when successful commercial production was started, as the requirements of the aerospace industry for better and lightweight materials became of paramount importance. In recent decades, carbon fibers have found wide applications in commercial and civilian aircraft, along with recreational, industrial, and transportation markets as the price of carbon fiber has come down and technologies have matured. The market for carbon fiber has experienced a good growth in recent years. The growth rate for the last 23years was about 12%. The article reviewed 9,641 Korea, U.S., Japan, Europe patents issued in the carbon fibers in order to offer additional insight for researchers and companies seeking to navigate carbon fiber patent landscape. This article will provide you with all the valuable information and tools you will need to investigate your study successfully within the carbon fiber field. This article also will save you hundreds of hours of your own personal research time and will significantly benefit you in expanding your business in the carbon fiber market.

Effect of Inherent Anatomy of Plant Fibers on the Morphology of Carbon Synthesized from Them and Their Hydrogen Absorption Capacity

  • Sharon, Madhuri;Sharon, Maheshwar
    • Carbon letters
    • /
    • v.13 no.3
    • /
    • pp.161-166
    • /
    • 2012
  • Carbon materials were synthesized by pyrolysis from fibers of Corn-straw (Zea mays), Rice-straw (Oryza sativa), Jute-straw (Corchorus capsularis) Bamboo (Bombax bambusa), Bagass (Saccharum officinarum), Cotton (Bombax malabaricum), and Coconut (Cocos nucifera); these materials were characterized by scanning electron microscope, X-ray diffraction (XRD), and Raman spectra. All carbon materials are micro sized with large pores or channel like morphology. The unique complex spongy, porous and channel like structure of Carbon shows a lot of similarity with the original anatomy of the plant fibers used as precursor. Waxy contents like tyloses and pits present on fiber tracheids that were seen in the inherent anatomy disappear after pyrolysis and only the carbon skeleton remained; XRD analysis shows that carbon shows the development of a (002) plane, with the exception of carbon obtained from bamboo, which shows a very crystalline character. Raman studies of all carbon materials showed the presence of G- and D-bands of almost equal intensities, suggesting the presence of graphitic carbon as well as a disordered graphitic structure. Carbon materials possessing lesser density, larger surface area, more graphitic with less of an $sp^3$ carbon contribution, and having pore sizes around $10{\mu}m$ favor hydrogen adsorption. Carbon materials synthesized from bagass meet these requirements most effectively, followed by cotton fiber, which was more effective than the carbon synthesized from the other plant fibers.

Mechanical Properties and Oxidation Behaviors of Boron Oxide Implanted Carbon Fibers

  • Noh, Baek-Nam;Kim, Jung-Il;JooN, Hyeok-Jong
    • Carbon letters
    • /
    • v.1 no.2
    • /
    • pp.64-68
    • /
    • 2000
  • This paper describes the mechanical properties and oxidation resistance of carbon fibers with and without additions of boron oxide additives, and describes the changes in the properties resulting from increased heat treatment temperature (HTT) of the fibers. Carbon fibers in this experiment were heat treated up to $2800^{\circ}C$ each with and without boron oxide treated on the surface of fibers. In the case of boron oxide added carbon fibers, they do not show the improvement of tensile strength and modulus compared to those of no treated carbon fibers below $2200^{\circ}C$ since they are doped substitutionally with boron above $2600^{\circ}C$, which accelerate the graphitization of carbon fibers. Boron oxide implanted carbon fibers showed high resistance to oxidation, however, when carbon fibers were heat treated below $2200^{\circ}C$, they showed almost the same trend of air oxidation.

  • PDF

A Study on the Machining Charcterisitics of Milling of cylinderical Rod Materials for Passenger Car (승용차용 CYLINDER ROD 소재의 밀링 적삭 특성 연구)

  • 채왕석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • /
    • pp.143-148
    • /
    • 1996
  • In this paper, we have studied internal quality including chemical compositions, microscopic structure and nonmetalic inclusion of test materials. We have analyzed dynamic characteristics of cutting force of milling including tensile strength value hardness etcs. Test materials are used the tempered carbon steel and the non-tempered carbon steel. The obtained results are as follows: 1.In analyzing internal quality, the tempered carbon steel have typical martensite structure and the non-tempered carbon steel have ferrite+pearlite structure. 2.Yield strength, tensile strength and hardness value are in the non-tempered carbon steel but elongation is maximum value in the tempered carbon steel. 3.Cutting force is smaller non-tempered carbon steel than tempered carbon steel when feed speed and depth of cut is constant. 4.Cutting force is smaller to the tempered carbon steel and smaller non-tempered carbon steel than tempered carbon steel when cutting conditions

  • PDF