• Title/Summary/Keyword: CSBA

Search Result 3, Processing Time 0.051 seconds

An advanced core design for a soluble-boron-free small modular reactor ATOM with centrally-shielded burnable absorber

  • Nguyen, Xuan Ha;Kim, ChiHyung;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.369-376
    • /
    • 2019
  • A complete solution for a soluble-boron-free (SBF) small modular reactor (SMR) is pursued with a new burnable absorber concept, namely centrally-shielded burnable absorber (CSBA). Neutronic flexibility of the CSBA design has been discussed with fuel assembly (FA) analyses. Major design parameters and goals of the SBF SMR are discussed in view of the reactor core design and three CSBA designs are introduced to achieve both a very low burnup reactivity swing (BRS) and minimal residual reactivity of the CSBA. It is demonstrated that the core achieves a long cycle length (~37 months) and high burnup (~30 GWd/tU), while the BRS is only about 1100 pcm and the radial power distribution is rather flat. This research also introduces a supplementary reactivity control mechanism using stainless steel as mechanical shim (MS) rod to obtain the criticality during normal operation. A further analysis is performed to investigate the local power peaking of the CSBA-loaded FA at MS-rodded condition. Moreover, a simple $B_4C$-based control rod arrangement is proposed to assure a sufficient shutdown margin even at the cold-zero-power condition. All calculations in this neutronic-thermal hydraulic coupled investigation of the 3D SBF SMR core are completed by a two-step Monte Carlo-diffusion hybrid methodology.

Physics study for high-performance and very-low-boron APR1400 core with 24-month cycle length

  • Do, Manseok;Nguyen, Xuan Ha;Jang, Seongdong;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.869-877
    • /
    • 2020
  • A 24-month Advanced Power Reactor 1400 (APR1400) core with a very-low-boron (VLB) concentration has been investigated for an inherently safe and high-performance PWR in this work. To develop a high-performance APR1400 which is able to do the passive frequency control operation, VLB feature is essential. In this paper, the centrally-shielded burnable absorber (CSBA) is utilized for an efficient VLB operation in the 24-month cycle APR1400 core. This innovative design of the VLB APR1400 core includes the optimization of burnable absorber and loading pattern as well as axial cutback for a 24-month cycle operation. In addition to CSBA, an Er-doped guide thimble is also introduced for partial management of the excess reactivity and local peaking factor. To improve the neutron economy of the core, two alternative radial reflectors are adopted in this study, which are SS-304 and ZrO2. The core reactivity and power distributions for a 2-batch equilibrium cycle are analyzed and compared for each reflector design. Numerical results show that a VLB core can be successfully designed with 24-month cycle and the cycle length is improved significantly with the alternative reflectors. The neutronic analyses are performed using the Monte Carlo Serpent code and 3-D diffusion code COREDAX-2 with the ENDF/B-VII.1.

A Proposal for Korean armed forces preparing toward Future war: Examine the U.S. 'Mosaic Warfare' Concept (미래전을 대비한 한국군 발전방향 제언: 미국의 모자이크전 수행개념 고찰을 통하여)

  • Chang, Jin O;Jung, Jae-young
    • Maritime Security
    • /
    • v.1 no.1
    • /
    • pp.215-240
    • /
    • 2020
  • In 2017, the U.S. DARPA coined 'mosaic warfare' as a new way of warfighting. According to the Timothy Grayson, director of DARPA's Strategic Technologies Office, mosaic warfare is a "system of system" approach to warfghting designed around compatible "tiles" of capabilities, rather than uniquely shaped "puzzle pieces" that must be fitted into a specific slot in a battle plan in order for it to work. Prior to cover mosaic warfare theory and recent development, it deals analyze its background and several premises for better understanding. The U.S. DoD officials might acknowledge the current its forces vulnerability to the China's A2/AD assets. Furthermore, the U.S. seeks to complete military superiority even in other nation's territorial domains including sea and air. Given its rapid combat restoration capability and less manpower casualty, the U.S. would be able to ready to endure war of attrition that requires massive resources. The core concept of mosaic warfare is a "decision centric warfare". To embody this idea, it create adaptability for U.S. forces and complexity or uncertainty for the enemy through the rapid composition and recomposition of a more disag g reg ated U.S. military force using human command and machine control. This allows providing more options to friendly forces and collapse adversary's OODA loop eventually. Adaptable kill web, composable force packages, A.I., and context-centric C3 architecture are crucial elements to implement and carry out mosaic warfare. Recently, CSBA showed an compelling assessment of mosaic warfare simulation. In this wargame, there was a significant differences between traditional and mosaic teams. Mosaic team was able to mount more simultaneous actions, creating additional complexity to adversaries and overwhelming their decision-making with less friendly force's human casualty. It increase the speed of the U.S. force's decision-making, enabling commanders to better employ tempo. Consequently, this article finds out and suggests implications for Korea armed forces. First of all, it needs to examine and develop 'mosaic warfare' in terms of our security circumstance. In response to future warfare, reviewing overall force structure and architecture is required which is able to compose force element regardless domain. In regards to insufficient defense resources and budget, "choice" and "concentration" are also essential. It needs to have eyes on the neighboring countries' development of future war concept carefully.

  • PDF