• Title, Summary, Keyword: CMKLR1

Search Result 2, Processing Time 0.105 seconds

Homology Modelling of Chemerin like Receptor-1 (CMKLR1): Potential Target for Treating Type II Diabetes

  • B, Sathya.
    • Journal of the Chosun Natural Science
    • /
    • v.10 no.1
    • /
    • pp.20-26
    • /
    • 2017
  • Chemerin receptor, which predominantly expressed in immune cells as well as adipose tissue, was found to stimulate chemotaxis of dendritic cells and macrophages to the site of inflammation. Chemerin is a widely distributed multifunctional secreted protein implicated in immune cell migration, adipogenesis, osteoblastogenesis, angiogenesis, myogenesis, and glucose homeostasis. Recent studies suggest chemerin may play an important role in the pathogenesis of obesity and insulin resistance and it becomes a potential therapeutic target for treating type II diabetes. The crystal structure of chemerin receptor has not yet been resolved. Therefore, in the present study, homology modelling of CMKLR1 was done utilizing the crystal structure of human angiotension receptor in complex with inverse agonist olmesartan as the template. Since the template has low sequence identity, we have incorporated both threading and comparative modelling approach to generate the three dimensional structure. 3D models were generated and validated. The reported models can be used to characterize the critical amino acid residues in the binding site of CMKLR1.

The Regulation of Chemerin and CMKLR1 Genes Expression by TNF-α, Adiponectin, and Chemerin Analog in Bovine Differentiated Adipocytes

  • Suzuki, Y.;Hong, Y.H.;Song, S.H.;Ardiyanti, A.;Kato, D.;So, K.H.;Katoh, K.;Roh, Sang-Gun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.9
    • /
    • pp.1316-1321
    • /
    • 2012
  • Adipokines, adipocyte-derived protein, have important roles in various kinds of physiology including energy homeostasis. Chemerin, one of adipocyte-derived adipokines, is highly expressed in differentiated adipocytes and is known to induce macrophage chemotaxis and glucose intolerance. The objective of the present study was to investigate the changes of chemerin and the chemokine-like-receptor 1 (CMKLR1) gene expression levels during differentiation of the bovine adipocyte and in differentiated adipocytes treated with tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), adiponectin, leptin, and chemerin (peptide analog). The expression levels of the chemerin gene increased at d 6 and 12 of the differentiation period accompanied by increased cytoplasm lipid droplets. From d 6 onward, peroxisome proliferator-activated receptor-${\gamma}2$ (PPAR-${\gamma}2$) gene expression levels were significantly higher than that of d 0 and 3. In contrast, CMKLR1 expression levels decreased at the end of the differentiation period. In fully differentiated adipocytes (i.e. at d 12), the treatment of TNF-${\alpha}$ and adiponectin upregulated both chemerin and CMKLR1 gene expression levels, although leptin did not show such effects. Moreover, chemerin analog treatment was shown to upregulate chemerin gene expression levels regardless of doses. These results suggest that the expression of chemerin in bovine adipocyte might be regulated by chemerin itself and other adipokines, which indicates its possible role in modulating the adipokine secretions in adipose tissues.