• Title, Summary, Keyword: Battery State Estimation

Search Result 97, Processing Time 0.037 seconds

Aging Process and SOH Estimation of Li-ion Battery (Li-ion 배터리의 열화 과정 및 SOH 판별방법)

  • Park, Ilkyu;Kong, Seil;Cha, Hanju
    • Proceedings of the KIPE Conference
    • /
    • /
    • pp.552-553
    • /
    • 2012
  • 본 논문에서는 리튬 이온(Li-ion) 배터리의 열화과정 및 SOH(State-of-Health, 잔존수명) 판별방법에 대해 분석하였다. 리튬 이온 배터리의 SOH는 충/방전 주기의 횟수와 방법 및 전류에 따라 달라지며, 특히 온도에 따라 임피던스가 민감하게 변화하며, 그 과정에서 OCV(Open Circuit Voltage, 개방전압)가 변하게 된다. 따라서 온도변화와 배터리의 충/방전 과정에서 변화하는 임피던스의 특성과 그에 따른 OCV 변화를 고려하여 SOH 판별하는 방법과 리튬 이온 배터리의 열화 과정을 분석하여 소개한다.

  • PDF

The state-of-Health estimation technique using dual sliding mode observer for hybrid electric vehicle lithium battery (듀얼 슬라이딩 모드 관측기를 사용한 하이브리드 자동차용 리튬 배터리의 수명 예측 기법)

  • Kim, Il-Song;Lhee, Chin-Gook
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.137-138
    • /
    • 2007
  • 하이브리드 자동차용 리듐 배터리의 수명을 예측하기 위한 듀얼 슬라이딩 모드 관측기를 설계하는 방법에 대해서 논의한다. 단순화된 R-C 모델을 사용하여 리듐 배터리를 전기적으로 모델링하고, 듀얼 슬라이딩 모드 관측기를 설계하는 방법에 대해서 순차적으로 서술한다. 제안된 시스템의 구조는 단순하고 구현이 쉬운 장점이 있으며, 외란에 대해서 강인하다는 특징도 가지고 있다. Lyapunov 조건에 의한 관측기의 수렴성이 증명되고 시스템의 성능은 UDDS(Urban dynamometer driving schedule) 시험에 의해서 입증되었다. 제안된 시스템은 실제 주행 상황에서도 짧은 계산시간과 뛰어난 추적 성능을 보여주었다.

  • PDF

The State of Charge Estimation for Lithium-Polymer Battery using PI Observer (PI 상태관측기를 이용한 리튬폴리머 배터리 SOC 추정)

  • Lee, Junwon;Shin, Gyubeom;Cha, Hanju
    • Proceedings of the KIPE Conference
    • /
    • /
    • pp.58-59
    • /
    • 2014
  • 본 논문에서는 비례-적분(PI) 제어의 상태관측기를 구성하여 리튬폴리머 배터리의 충전량(SOC)을 추정하는 기법에 대해 설계한 뒤 실험을 통하여 검증하였다. 리튬폴리머 배터리는 1차 R-C 등가모델로 단순화하여 표현하였고, PI상태관측기를 Matlab/Simulink에서 설계하였다. 상온($25^{\circ}C$)에서 양방향 DC-DC 컨버터를 이용하여 리튬폴리머 배터리에 FTP-72 충 방전 사이클의 전류패턴을 인가한 뒤 SOC 추정기법을 검증하였다. PI상태관측기는 임의의 초기 SOC 상태에서도 오차율 2%이내로 SOC를 추정하여 모델링 에러나 외란에도 강인한 특성이 있는 것을 확인하였다.

  • PDF

Battery Pack Power Management Using Cell Parameter Estimation (배터리 셀 파라미터 추정을 이용한 배터리 팩의 충방전 관리)

  • Yoon, Sunghyun;Chun, Chang Yoon;Cho, Bo-Hyung
    • Proceedings of the KIPE Conference
    • /
    • /
    • pp.345-346
    • /
    • 2014
  • 본 논문에서는 배터리팩의 안전한 충방전 관리를 위해 배터리팩의 전류 제한 지표인 state-of-power (SOP)를 구하는 알고리즘을 제안한다. 직렬 연결된 배터리 팩의 SOP를 구하기 위해서는 각 셀의 배터리 파라미터 추정 과정이 필수적이다. 이를 구현하기 위해 듀얼 확장 칼만 필터 (DEKF)를 사용하였으며 효율적인 운용을 위해 DEKF의 사용량을 줄이는 방안을 제시한다. 실험을 통해 배터리 파라미터 추정 결과를 확인하였다.

  • PDF

Study on Analysis of Performance to Surrogate modeling Method for Battery State Estimation (리튬이온 배터리 상태 추정을 위한 근사모델링 방법과 그 성능 분석을 통한 수명 예측에 대한 연구)

  • Kang, Deokhun;Lee, Pyeng-Yeon;Jang, Shinwoo;Kim, Jonghoon
    • Proceedings of the KIPE Conference
    • /
    • /
    • pp.206-207
    • /
    • 2019
  • 리튬이온 배터리의 상태를 모니터링 하는 방법에 있어서, 대표적으로 배터리의 충전 상태(SOC)와 배터리의 건강 상태(SOH)를 추정하여 상태 지표로 사용된다. 본 연구에서는 리튬 이온 배터리의 상태 지표를 위한 용량 정보의 추정을 데이터 기반의 근사 모델을 이용하여 수행하였다. 다양한 근사 모델링 방법을 적용하여 추정되는 용량 정보를 비교하고, 모델링 방법에 따른 용량 추정 성능을 확인하였다. 또한, 이를 바탕으로 리튬이온 배터리의 용량을 예측하고 예측 성능을 분석하였다. 본 연구를 통하여 근사모델을 이용하는 경우, 리튬이온 배터리의 용량 추정은 물론 예측을 수행하는 방법으로서의 활용 가능성을 확인하였으며, 또한 제안하는 방법을 이용하여 보유하고 있는 모니터링 데이터를 활용하여 리튬이온 배터리의 성능을 평가하는데 있어 효과적으로 활용될 수 있을 것으로 판단된다.

  • PDF

A Research on the Estimation Method for the SOC of the Lithium Batteries Using AC Impedance (AC 임피던스를 이용한 리튬 전지의 충전상태 추정에 관한 연구)

  • Lee, Jong-Hak;Kim, Sang-Hyun;Kim, Wook;Choi, Woo-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.457-465
    • /
    • 2009
  • Lithium batteries are widely used in mobile electronic devices due to their higher voltage and energy density, lighter weight and longer life cycle compared to other secondary batteries. In particular, high demand for lithium batteries is expected for electric cars. In case of lithium batteries used in electric cars, driving distance must be calculated accurately and discharging should not be done below the level of making it impossible to crank. Therefore, accurate information about state of charge (SOC) becomes an essential element for reliable driving. In this paper, a new method of estimating the SOC of lithium polymer batteries by using AC impedance is proposed. In the proposed method, parameters are extracted by fitting a curve of impedance measured at each frequency on the equivalent impedance model and extracted parameters are used to estimate SOC. Experiments were conducted on lithium polymer batteries with similar capacities made by different manufacturers to prove the validity of the proposed method.

Application of Superconducting Flywheel Energy Storage System to Inertia-Free Stand-Alone Microgrid

  • Bae, SunHo;Choi, DongHee;Park, Jung-Wook;Lee, Soo Hyoung
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1442-1448
    • /
    • 2017
  • Recently, electric power systems have been operating with tight margins and have reached their operational limits. Many researchers consider a microgrid as one of the best solutions to relieve that problem. The microgrid is generally powered by renewable energies that are connected through power converters. In contrast to the rotational machines in the conventional power plants, the converters do not have physical rotors, and therefore they do not have rotational inertia. Consequently, a stand-alone microgrid has no inertia when it is powered by the only converter-based-generators (CBGs). As a result, the relationship between power and frequency is not valid, and the grid frequency cannot represent the power balance between the generator and load. In this paper, a superconducting flywheel energy storage system (SFESS) is applied to an inertia-free stand-alone (IFSA) microgrid. The SFESS accelerates or decelerates its rotational speed by storing or releasing power, respectively, based on its rotational inertia. Then, power in the IFSA microgrid can be balanced by measuring the rotor speed in the SFESS. This method does not have an error accumulation problem, which must be considered for the state of charge (SOC) estimation in the battery energy storage system (BESS). The performance of the proposed method is verified by an electromagnetic transient (EMT) simulation.