• Title, Summary, Keyword: BAPTA

Search Result 54, Processing Time 0.116 seconds

Effect of trans-10, cis-12 Conjugated Linoleic Acid on Calcium-Dependent Reactive Oxygen Species and Nitric Oxide Production and Nuclear Factor-${\kappa}B$ Activation in Lipopolysaccharide-Stimulated RAW 264.7 Cells (LPS 자극 RAW 264.7 세포에 있어서 칼슘의존성 ROS와 NO 생산 및 NF-${\kappa}B$ 활성에 대한 CLA의 억제효과)

  • Choi, Tae-Won;Kang, Byeong-Teck;Kang, Ji-Houn;Yang, Mhan-Pyo
    • Journal of Veterinary Clinics
    • /
    • v.32 no.2
    • /
    • pp.135-140
    • /
    • 2015
  • Trans-10, cis-12-conjugated linoleic acid (t10c12-CLA) has been shown to participate in the regulation of anti-inflammatory effects. The objectives of this study were to examine the effects of t10c12-CLA on reactive oxygen species (ROS) and nitric oxide (NO) production and nuclear factor-kappaB (NF-${\kappa}B$) activation in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and to determine whether these effects were associated with change of intracellular calcium ion ($Ca^{2+}$). ROS production was increased in LPS-stimulated RAW 264.7 cells, and this effect was suppressed by 1,2-bis-(o-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA/AM), a calcium chelator. t10c12-CLA suppressed ROS production in LPS-stimulated RAW 264.7 cells, which was further more decreased by treatment with BAPTA/AM. These indicated that t10c12-CLA decreases $Ca^{2+}$-dependent ROS production in LPS-stimulated RAW 264.7 cells. Similarly, NF-${\kappa}B$ p65 DNA binding activity and NO production were decreased by treatment with either t10c12-CLA, BAPTA/AM, or t10c12-CLA and BAPTA/AM combination. However, there were no differences between t10c12-CLA and BAPTA/AM treatment in NO production of LPS-stimulated RAW 264.7 cells. These data indicate that t10c12-CLA inhibits the increases in ROS and NO production and the NF-${\kappa}B$ activation in LPS-stimulated condition. These results suggested that CLA exerts potent anti-inflammatory effects by suppression of LPS-induced ROS and NO production, and NF-${\kappa}B$ activationn via $Ca^{2+}$-dependent pathway.

[$Na^+-Ca^{2+}$ Exchange Curtails $Ca^{2+}$before Its Diffusion to Global $Ca^{2+}{_i}$ in the Rat Ventricular Myocyte

  • Ahn, Sung-Wan;Ko, Chang-Mann
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.2
    • /
    • pp.95-101
    • /
    • 2005
  • In the heart, $Na^{+}-Ca^{2+}$ exchange (NCX) is the major $Ca^{2+}$ extrusion mechanism. NCX has been considered as a relaxation mechanism, as it reduces global $[Ca^{2+}]_i$ raised during activation. However, if NCX locates in the close proximity to the ryanodine receptor, then NCX would curtail $Ca^{2+}$ before its diffusion to global $Ca^{2+}_i$ This will result in a global $[Ca^{2+}]_i$ decrease especially during its ascending phase rather than descending phase. Therefore, NCX would decrease the myocardial contractility rather than inducing relaxation in the heart. This possibility was examined in this study by comparing NCX-induced extrusion of $Ca^{2+}$ after its release from SR in the presence and absence of global $Ca^{2+}_i$ transient in the isolated single rat ventricular myocytes by using patch-clamp technique in a whole-cell configuration. Global $Ca^{2+}_i$ transient was controlled by an internal dialysis with different concentrations of BAPTA added in the pipette. During stimulation with a ramp pulse from +100 mV to -100 mV for 200 ms, global $Ca^{2+}_i$ transient was suppressed only mildly, and completely at 1 mmol/L, and 10 mmol/L BAPTA, respectively. In these situations, ryanodine-sensitive inward NCX current was compared using $100{\mu}mol/L$ ryanodine, $Na^+$ depletion, 5 mmol/L $NaCl_2$ and $1{\mu}mol/L$ nifedipine. Surprisingly, the result showed that the ryanodine-sensitive inward NCX current was well preserved after 10 mmol/L BAPTA to 91 % of that obtained after 1 mmol/L BAPTA. From this result, it is concluded that most of the NCX-induced $Ca^{2+}$ extrusion occurs before the $Ca^{2+}$ diffuses to global $Ca^{2+})i$ in the rat ventricular myocyte.

Effect of Intracellular Calcium Chelator on Phosphorylation of Spinal N-Methyl-D-Aspartate Receptor following Electroacupuncture Stimulation in Rats (칼슘 저해제가 전침자극에 의한 척수 N-Methyl-D-Aspartate 수용체 인산화에 미치는 영향)

  • Jung, Taek-Guen;Cho, Sung-Woo;Kang, Yeon-Kyeong;Chang, Dong-Ho;Lee, In-Seon
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.20 no.1
    • /
    • pp.27-36
    • /
    • 2010
  • Objectives : We investigated the role of intracellular calcium chelator, bis-(2-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid(BAPTA), on the modulation of phosphorylation of the spinal N-methyl-D-aspartate receptor(NMDAR) NR1 and NR2B subunits following electroacupuncture(EA). Methods : Bilateral 2 Hz EA stimulation with 1.0 mA was delivered at those acupoints corresponding to Zusanli(ST36) and Sanyinjiao(SP6) in man via needles for 30min. Results : EA analgesia was reduced by intra-peritoneal injection at a higher dose of BAPTA from termination of EA stimulation. At 60 min after EA treatment, the total number of c-fos-immunostained neurons in each regions of the dorsal horn in the $L_{4-5}$ segments was decreased by BAPTA injection, especially in nucleus proprius. The mean integrated optical density (IOD) of NR1 and NR2B subunits were increased only in superficial laminae of EA-treated rats when compared with normal rats. However, the mean IOD of pNR1 was significantly decreased by BAPTA injection in both the superficial laminae and neck region and pNR2B in the superficial laminae. Western blot analyses confirmed the decreased expression of pNR1 and pNR2B. Conclusions : We concluded that intracellular calcium may well play an important role in EA analgesia by modulating the phosphorylation state of spinal NMDAR subunits.

6-Hydroxydopamine-induced Adaptive Increase in GSH Is Dependent on Reactive Oxygen Species and Ca2+ but not on Extracellular Signal-regulated Kinase in SK-N-SH Human Neuroblastoma Cells

  • JIN Da-Qing;Park Byung CHUL;KIM Jung-Ae
    • Biomolecules & Therapeutics
    • /
    • v.13 no.4
    • /
    • pp.256-262
    • /
    • 2005
  • We examined the signaling molecules involved in the 6-hydroxydopamine (6-OHDA)-induced neuronal cell death and increase in cellular glutathione (GSH) level in SK-N-SH cells. The 6-OH-DA-induced cell death was significantly prevented by the pretreatment with N-acetylcysteine (NAC), a thiol antioxidant, and BAPTA, an intracellular $Ca^{2+}$ chelator. Although 6-OHDA induced ERK phosphorylation, the pretreatment with PD98059, an ERK inhibitor, did not block 6-OHDA-induced cell death. In addition, the 6-OHDA-induced activation of caspase-3, a key signal for apoptosis, was blocked by the pretreatment with NAC and BAPTA. While the level of reactive oxygen species (ROS) was significantly increased in the 6-OHDA-treated cells, the cellular GSH level was not altered for the first 6-hr exposure to 6-OHDA, but after then, the level was significantly increased, which was also blocked by the pretreatment with NAC and BAPTA, but not by PD98059. Depletion of GSH by pretreating the cells with DL-buthionine-(S,R)-sulfoximine (BSO), a glutathione synthesis inhibitor, rather significantly potentiated the 6-OHDA-induced death. In contrast to the pretreatment with NAC, 6-OHDA-induced cell death was not prevented by the post-treatment with NAC 30 min after 6-OHDA treatment. The results indicate that the GSH level which is increased adaptively by the 6-OHDA-induced ROS and intracellular $Ca^{2+}$ is not enough to overcome the death signal mediated through ROS-$Ca^{2+}$ -caspase pathway.

Effects of Calcium Chelator on in vitro Fertilization of Rat Oocyte (흰쥐 난자의 체외수정에 미치는 Calcium Chelator의 영향)

  • 홍순갑;김해권;김성례;이영기;이준영
    • Development and Reproduction
    • /
    • v.3 no.1
    • /
    • pp.21-28
    • /
    • 1999
  • In order to examine the effect of $Ca^{2+}$ -chelation on in vitro fertilization of rat zona-free oocyte, the formation of cortical granule envelope (CGE) and the rate of fertilization related to monospermy and polyspermy were determined. The ultrastructural characteristics of oocytes were observed with the scanning electron microscope and BAPTA/AM was used for calcium-chelation. The CGE formed by cortical reaction was observed in zona-free oocyte inseminated in vitro and it was also observed in the calcium chelator (1, 5, 10$\mu$M BAPTA/AM) treated zona-free oocytes inseminated in vitro. The CGE developed according to incubation time. The fertilization rate was decreased in the calcium chelator-treated group (59.8, 38.1, 37.0%) compared to the control group (60.6%) but monospermy rate was increased in the calcium chelator-treated group (45.0, 47.3, 50.9%) compared to control group (37.5%). The above results demonstrate that the CGE is formed during fertilization in rat and the extracellular calcium is used in cortical reaction. Also the results suggest that proper concentration of free calcium in oocyte acts as important factor in fertilization.n.

  • PDF

Role of $Ca^{2+}$ in the Stimulation of Glucose Transport by Insulin in Adipocytes

  • Chang, Sung-Hoe;Jang, Yeon-Jin;Park, Kun-Koo;Kim, Ghi-Su;Ryu, Hee-Jeong;Park, Chun-Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.3
    • /
    • pp.357-364
    • /
    • 1999
  • We investigated the role of $Ca^{2+}$ and protein kinases/phosphatases in the stimulatory effect of insulin on glucose transport. In isolated rat adipocytes, the simple omission of $CaCl_2$ from the incubation medium significantly reduced, but did not abolish, insulin-stimulated 2-deoxy glucose (2-DG) uptake. Pre-loading adipocytes with intracellular $Ca^{2+}$ chelator, 5,5'-dimethyl bis (o-aminophenoxy)ethane-N,N,N'N' tetraacetic acetoxymethyl ester (5,5'-dimethyl BAPTA/AM) completely blocked the stimulation. Insulin raised intracellular $Ca^{2+}$ concentration $([Ca^{2+}]_i)$ about 1.7 times the basal level of $72{\pm}5$ nM, and 5,5'-dimethyl BAPTA/AM kept it constant at the basal level. This correlation between insulin-induced increases in 2-DG uptake and $[Ca^{2+}]_i$ indicates that the elevation of $[Ca^{2+}]_i$ may be prerequisite for the stimulation of glucose transport. Studies with inhibitors (ML-9, KN-62, cyclosporin A) of $Ca^{2+}-calmodulin$ dependent protein kinases/phosphatases also indicate an involvement of intracellular $Ca^{2+}.$ Additional studies with okadaic acid and calyculin A, protein phosphatase-1 (PP-1) and 2A (PP-2A) inhibitors, indicate an involvement of PP-1 in insulin action on 2-DG uptake. These results indicate an involvement of $Ca^{2+}-dependent$ signaling pathway in insulin action on glucose transport.

  • PDF

Effects of MK-801, CNQX, Cycloheximide and BAPTA-AM on Anoxic Injury of Hippocampal Organotypic Slice Culture (해마 조직 절편 배양을 이용한 무산소 손상에 대한 MK-801, CNQX, Cycloheximide 및 BAPTA-AM의 효과)

  • Moon, Soo-Hyeon;Kwon, Taek-Hyon;Park, Youn-Kwan;Chung, Heung-Seob;Suh, Jung Keun
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.8
    • /
    • pp.1008-1018
    • /
    • 2000
  • Objective : Glutamate induced excitotoxicity is one of the leading causes of cell death under pathologic condition. However, there is controversy whether excitotoxicity may also participate in the neuronal death under low intensity insult such as simple hypoxia or hypoglycemia. To investigate the role of NMDA receptor in low intensity insult, we chose anoxia as the method of injury and used organotypically cultured hippocampal slice as the material of experiment. Materials & Methods : The hippocampal slices cultured for 2-3 weeks were exposed to 60 minutes of complete oxygen deprivation(anoxia). Neuronal death was assessed with Sytox stain. Corrected optical density of fluorescence in gray scale, used as cellular death indicator, was obtained from pictures taken at 24 and 48 hours following the insult. The well-known in vivo phenomenon of regional difference in susceptibility of hippocampal sub-fields to ischemic insult was reproduced in HOSC(hippocampal organotypic slice culture) by complete oxygen deprivation injury. Results : $CA_1$ was the most vulnerable to complete oxygen deprivation in hippocampus while $CA_3$ was resistant. Oxygen deprivation for 10 and 20 minutes with glucose(6.5g/l) present was insufficient to induce neuronal death in the cultured hippocampal slice. However, after 30 minutes exposure under anoxic condition, neuronal death was able to be detected in the center of $CA_1$ area. The intensity and area of fluorescence indicating cell death correlated with the duration of oxygen deprivation. NMDA receptor and non-NMDA receptor blocking with MK-801(30 & $60{\mu}M$) and CNQX($100{\mu}M$) did not provide cellular protection to HOSC against damage induced by oxygen deprivation, but increased intracellular calcium buffering capacity with BAPTA-AM($10{\mu}M$) was effective in preventing neuronal death (p=0.01, Student's t-test). Cycloheximide($1{\mu}g/ml$, $10{\mu}g/ml$) provided no protection to HOSC against insult of complete oxygen deprivation for 60 minutes and combined therapy of MK-801(30 & $60{\mu}M$) and cycloheximide(1 & $10{\mu}g/ml$) was also ineffective in preventing neuronal death. Conclusion : The results of this study show that the another mechanism not associated with glutamate receptor(NMDA & non NMDA) may play major role in cell death mechanisms induced by complete oxygen deprivation and increased intracellular calcium during anoxia may participate in the neuronal death mechanism of oxygen deprivation. Further investigation of the calcium entry channel activated during oxygen deprivation is necessary to understand the neuronal death of anoxia.

  • PDF

Inactivation of N-Type Calcium Current in Rat Sympathetic Neurons

  • Lee, Mi-Sun;Goo, Yong-Sook
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • /
    • pp.26-26
    • /
    • 2001
  • Inactivation of N-type calcium current has been reported to be both voltage dependent and Ca$\^$2+/ dependent. We have investigated the effects of Ba$\^$2+/ and Ca$\^$2+/ on N-channel inactivation in rat superior cervical ganglion neurons using the whole cell configuration of patch clamp technique. Inactivation was larger in Ca$\^$2+/ than in Ba$\^$2+/ even with 20 mM BAPTA.(omitted)

  • PDF

Hypothetical Mechanisms of G protein-coupled neurodegeneration in glutamate excitotoxicity in human SH-SY5Y neuroblastoma cells

  • Nikolova, Nikolova Sevdalina;Jin, Da-Qing;Kim, Jung-Ae
    • Proceedings of the PSK Conference
    • /
    • /
    • pp.123.2-123
    • /
    • 2003
  • The cellular mechanisms by which excess exposure to the excitatory neurotransmitter glutamate can produce neuronal injury are unknown. In this study, we found that glutamate induced cell death at IC (50) of 100 microM on the cultured human SH-SY5Y neuroblastoma cells. It has been hypothesized that glutamate excitotoxicity is related with the elevation of calcium (Ca) levels. To determine the dependence of glutamate neurotoxicity on Ca environment, extracellular (EDTA) and intracellular (BAPTA/AM) chelator were used. (omitted)

  • PDF

Activation of Phospholipase D in Rat Thymocytes by Sphingosine

  • Lee, Young-kyun;Choi, Myung-Un
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.10
    • /
    • pp.1451-1489
    • /
    • 2002
  • Sphingosine is known to regulate a wide range of cell physiology including growth, differentiation, and apoptosis. In this study, we examined the effect of sphingosine on the phospholipase D (PLD) activity in rat thymocytes. Sphingosine potently stimulated PLD in the absence of extracellular calcium, while depletion of intracellular calcium by BAPTA/AM treatment completely blocked activation of PLD by sphingosine. Sphingosine-induced increase of the intracellular calcium concentration was confirmed using a fluorescent calcium indicator Fluo-3/AM. A phosphoinositide-specific phospholipase C inhibitor U73122 partially inhibited the stimulation of PLD by sphingosine. When mouse PLD2 gene was transfected into mouse thymoma EL4 cells, which lack intrinsic PLD activity, sphingosine could stimulate PLD2 significantly while overexpression of human PLD1 had no effect. Taken together, the sphingosine-stimulated PLD activity in rat thymocytes is dependent on the mobilization of intracellular calcium and appears to be due to the PLD2 isoform.