• Title, Summary, Keyword: Atomic force microscopy (AFM)

Search Result 772, Processing Time 0.039 seconds

A New Calibration Method of Atomic Force Microscopy

  • Hyunkyu Kweon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.2
    • /
    • pp.11-16
    • /
    • 2001
  • This paper presents an in self-calibration method to corrent the Z-directional distortion of AFM(Atomic Force Microscopy).

  • PDF

Research of Detection Method for Cytotoxic Effects of Environmental Pollutants Using Atomic Force Microscopy (AFM) in HeLa Cells (원자현미경(AFM)을 이용한 환경오염물질에 노출된 HeLa 세포의 표면변화 연구)

  • Lee, Si-Won;Lee, Soo-Il;Choi, Jin-Hee
    • Environmental Analysis Health and Toxicology
    • /
    • v.23 no.1
    • /
    • pp.47-51
    • /
    • 2008
  • The toxicity of environmental pollutants was measured between a image of the surface topography in HeLa cells using atomic force microscopy for the possibility of toxic effect measurement and environmental monitoring. A image of the surface topography by AFM were estimated as toxic endpoints. The surface topography by AFM was observed a change of the cell surface in the environmental pollutants, but the standard of the measurement requires for the dose-effect degree. The overall results indicate that the possibility of measurement using AFM were confirmed a dose-effect degree related toxic effects, but it requres correlation between more various biomarker and AFM's measurements if the possibility of the toxic effect measurement was established.

Plasma Diagnosis by Using Atomic Force Microscopy and Neural Network (Atomic Force Microscopy와 신경망을 이용한 플라즈마 진단)

  • Park, Min-Gun;Kim, Byung-Whan
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.138-140
    • /
    • 2006
  • A new diagnosis model was constructed by combining atomic force microscopy (AFM), wavelet, and neural network. Plasma faults were characterized by filtering AFM-measured etch surface roughness with wavelet. The presented technique was evaluated with the data collected during the etching of silicon oxynitride thin film. A total of 17 etch experiments were conducted. Applying wavelet to AFM, surface roughness was detailed into vertical, horizon%at, and diagonal components. For each component, neural network recognition models were constructed and evaluated. Comparisons revealed that the vertical component-based model yielded about 30% improvement in the recognition accuracy over others. The presented technique was evaluated with the data collected during the etching of silicon oxynitride thin film. A total of 17 etch experiments were conducted

  • PDF

Quantitative Measurement of Nano-scale Force using Atomic Force Microscopy (AFM을 이용한 나노스케일 힘의 정량적 측정)

  • Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.28 no.2
    • /
    • pp.62-69
    • /
    • 2012
  • Atomic force microscopy (AFM) has been widely utilized as a versatile tool not only for imaging surfaces but also for understanding nano-scale interfacial phenomena. By measuring the responses of the photo detector due to bending and torsion of the cantilever, which are caused by the interactions between the probe and the sample surface, various interfacial phenomena and properties can be explored. One of the challenges faced by AFM researchers originates in the physics of measuring the small forces that act between the probe of a force sensing cantilever and the sample. To understand the interactions between the probe and the sample quantitatively, the force calibration is essential. In this work, the procedures used to calibrate AFM instrumentation for nano-scale force measurement in normal and lateral directions are reviewed.

Isolation of Listeria monocytogenes by Immunomagnetic Separation and Atomic Force Microscopy

  • Mercanolu, Birce;Aykut, S.;Ergun, M.Ali;Tan, Erdal
    • Journal of Microbiology
    • /
    • v.41 no.2
    • /
    • pp.144-147
    • /
    • 2003
  • Listeria monocytogenes is a pathogen of major concern to the food industry and the potential cause of severe infections such as listeriosis. Early detection of this foodborne pathogen is important in order to eliminate its potential hazards. So, immunomagnetic separation (IMS) has been suggested as a means of reducing the total analysis time and for improving the sensitivity of detection. Atomic force microscopy (AFM) has been used for measuring the topographic properties of sample surfaces at nanometer scale. In this study, we used AFM to confirm both the sensitivity and the specificity of IMS. Regarding AFM analysis, the length and the width of the bacteria, which were in agreement with literature values, were found to be 2.993 $\mu\textrm{m}$ and 0.837 $\mu\textrm{m}$, respectively. As a result, AFM helped us both characterize and measure the bacterial and bead structures.

Principle and Applications of Multifrequency Atomic Force Microscopy (다중주파수 AFM 원리 및 연구 동향)

  • Lee, Soo Il;Kim, Il Kwang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • /
    • pp.88-89
    • /
    • 2014
  • In dynamic force microscopy, the cantilever oscillates at a resonant frequency, and the tip deflection is measured at this frequency. The cantilever deflection is, however, highly nonlinear, and the surface properties can be embedded in the deflection at the frequencies other than the original resonant frequency of the cantilever. Multifrequency atomic force microscopy includes the excitation and detection of the deflection in two or more frequencies which are higher harmonics or eigenmodes. This can overcome the limitations of conventional atomic force microscope. We reviewed the multifrequency atomic force microscopy and its applications in many fields.

  • PDF

Atomic Force Microscopy Simulation for Si (001) Surface Defects (Si (001) 표면 결함 원자힘 현미경 전산모사)

  • Jo, Junyeong;Kim, Dae-Hee;Kim, Yurie;Kim, Ki-Yung;Kim, Yeong-Cheol
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.4
    • /
    • pp.1-5
    • /
    • 2018
  • Atomic force microscopy (AFM) simulation for Si (001) surface defects was conducted by using density functional theory (DFT). Three major defects on the Si (001) surface are difficult to analyze due to external noises that are always present in the images obtained by AFM. Noise-free surface defects obtained by simulation can help identify the real surface defects on AFM images. The surface defects were first optimized by using a DFT code. The AFM tip was designed by using five carbon atoms and positioned on the surface to calculate the system's energy. Forces between tip and surface were calculated from the energy data and converted into an AFM image. The simulated AFM images are noise-free and, therefore, can help evaluate the real surface defects present on the measured AFM images.

Atomic Force Microscopy Force Mapping Application in Biomedical Research (원자현미경의 나노 힘 측정을 이용한 생의학 연구에의 응용)

  • Cho S.J.;Lee D.J.;Kim E.P.;Lee D.R.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • /
    • pp.77-80
    • /
    • 2005
  • Local probe techniques such as scanning probe microscopy (SPM) or atomic force microscopy (AFM) extended our perception into ultra small world. Specially, the sense of touching was extended by AFM into the micro- and nanoworld and has provided complementary new insights of the microscopic world. In addition, touching objects is an essential step before trying to manipulate things. SPM as a touch sensor not only measure the mechanical properties but also detect different properties such as magnetic, electrical, ionic, thermal, chemical and biophysical properties in nanoscale and even less. Obtaining biophysical measurements, monitoring dynamics and processes together with high-resolution imaging of the biomolecules and cells with rather simpler sample preparation than any other techniques give great attractions to the scientists experimenting with biological samples. Among the many AFM capabilities we will specifically introduce the force plot which is used to measure tip-sample interactions and its application this time.

  • PDF