• Title, Summary, Keyword: Antibody Production

Search Result 720, Processing Time 0.043 seconds

Immunoadjuvant Effect of Platycodin D from Platycodon grandiflorum (Platycodin D 길경성분의 면역보조효과)

  • Han, Yongmoon
    • YAKHAK HOEJI
    • /
    • v.59 no.4
    • /
    • pp.170-176
    • /
    • 2015
  • In vaccine development, the major points may be induction of effective and increased levels of antibody production. This is especially the case when the antigenic sources are carbohydrates. For many years, thus, we have researched various types of formulations such as liposomal and conjugate vaccines. However, the fastidious formulation process and high costs are a problem. For this reason, there is currently a focus on utilizing immunoadjuvants. In this present study, we tested if platycodin D (PLD) from Platycodon Radix have immunoadjuvant activity against the cell wall of Candida albicans (CACW). The resulting data showed that in the murine model of antibody production, CACW combined with PLD [CACW/PLD/IFA] increased the production of antibodies specific to C. albicans when compared to the antibody production by [CACW/IFA]-induction, which was used as a negative control (P<0.05). In the case of [CACW/PLD/IFA], the antibody production was 1.4 times as that of the CFA. In addition, formulations containing either had a prolonged antibody inducing activity maintaining the initial titers of antibody as compared to the CFA formula. Cytokine profiling with the antisera displayed that the PLD produced both Th1 and Th2 immunoresponses, but Th1 dominant was much greater (P<0.05). Furthermore, [CACW/PLD/IFA] formula enhanced resistance of mice against disseminated candidiasis, whereas the CFA had no such effect. In conclusion, PLD has an immunologic activity, which is protective against the disease. Thus, PLD can be a goof candidate for a new immunoadjuvant in development of the fungal vaccine.

The Effect of Media Feeding Rate on the Production of Monoclonal Antibody Production in the Fed-batch Culture of Hybridoma (하이브리도마 세포의 유가식 배양에서 배지첨가속도가 단일클론 항체 생산에 미치는 영향)

  • 곽원재;최태부;박정극
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.3
    • /
    • pp.272-280
    • /
    • 1991
  • The effect of media feeding rate on cell growth and monoclonal antibody production in the fed-batch culture ot hybridoma A4W was studied. In the batch culture, the highest specific antibody production rate was observed at the begining of the culture period but its value tended to decrease rapidly with the culture time. The final antibody concentration and volumetric productivity was 65 $\mu g$/ml and 13 mg Mab/l/day, respectively. In the fed-batch culture, the specific antibody production rate, $q_p$ rebounded sharply within a few hours after the media feeding was started and it remained high until the end of culture if the media feeding was continued. The final antibody concentration was 220 $\mu g$/ml and the volumetric productivity was 45.1 mg/l/day. Further increase in final antibody concentration was achieved by applying a modified media of which component was fortified with glucose and glutamine, hence the final antibody concentration in this case was 270 $\mu g$/ml and the volumetric productivity was 51.8 mg/lday, which is as four tinlcs as high cuixparinf! to that of batch culture.

  • PDF

Differences in Optimal pH and Temperature for Cell Growth and Antibody Production Between Two Chinese Hamster Ovary Clones Derived from the Same Parental Clone

  • Kim, Sung-Hyun;Lee, Gyun-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.712-720
    • /
    • 2007
  • To investigate clonal variations of recombinant Chinese hamster ovary(rCHO) clones in response to culture pH and temperature, serum-free suspension cultures of two antibody-producing CHO clones(clones A and B), which were isolated from the same parental clone by the limiting dilution method, were performed in a bioreactor at pH values in the range of 6.8-7.6, and two different temperatures, $33^{\circ}C\;and\;37^{\circ}C$. In regard to cell growth, clone A and clone B displayed similar responses to temperature, although their degree of response differed. In contrast, clones A and B displayed different responses to temperature in regard to antibody production. In the case of clone A, no significant increase in maximum antibody concentration was achieved by lowering the culture temperature. The maximum antibody concentration obtained at $33^{\circ}C$(pH 7.4) and $37^{\circ}C$(pH 7.0) were $82.0{\pm}2.6$ and $73.2{\pm}4.1{\mu}g/ml$, respectively. On the other hand, in the case of clone B, an approximately 2.5-fold increase in maximum antibody concentration was achieved by lowering the culture temperature. The enhanced maximum antibody concentration of clone B at $33^{\circ}C$($132.6{\pm}14.9{\mu}g/ml$ at pH 7.2) was due to not only enhanced specific antibody productivity but also to prolonged culture longevity. At $33^{\circ}C$, the culture longevity of clone A also improved, but not as much as that of clone B. Taken together, CHO clones derived from the same parental clone displayed quite different responses to culture temperature and pH with regards antibody production, suggesting that environmental parameters such as temperature and pH should be optimized for each CHO clone.

Fractionated Aged Black Garlic Extracts Enhance Growth of Anti-My-10 Hybridoma Cells and Production of IgG1 Antibody

  • Lee, Ji Young;Chung, Namhyun;Lee, Yong Kwon
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.1
    • /
    • pp.61-63
    • /
    • 2014
  • Aged black garlic (ABG) was extracted with 20% ethanol and water (crude extracts) and fractionated into three categories (>10, 3-10, and <3 kDa). The effect of crude extract supplements on anti-My-10 hybridoma cell growth and IgG1 antibody production was investigated in suspension culture with a chemically defined protein-free medium. We observed that supplementation of ABG to the cell culture medium stimulated anti-My-10 hybridoma cell growth and production of IgG1 antibody, particularly with fractionated ABG of low molecular weight. The stimulation depended upon the concentration and the size of the fractionated ABG. We also found that the growth-promoting activity was not correlated with high antibody production. These results suggest that fractionated ABG is a novel and promising alternative as an animal cell culture supplement.

Effects of Ginsenosides Rd and Rg1 on Proliferation of B Cells and Antibody Induction (Rd와 Rg1 인삼배당체의 B 임파구 증식 및 항체 유도 효과)

  • Joo, Inkyung;Kim, Hayan;Kim, Jeonghyeon;Shehzad, Omer;Kim, Yeong Shik;Han, Yongmoon
    • YAKHAK HOEJI
    • /
    • v.57 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • Induction of effective and increased levels of antibody production may be major points in vaccine development. This is especially the case when the antigenic sources are carbohydrates. Thus, in our Lab various types of formulations such as liposomal and conjugate vaccines have been researched. However, the fastidious formulation process and high costs are a problem. For this reason, there is currently a focus on utilizing immunoadjuvants. In this present study, we tested whether ginsenosides Re (a panaxdiol) and Rg1 (a panaxtriol) from Panax ginseng have immunoadjuvant activity against the cell wall of Candida albicans (CACW). The resulting data showed that Rd and Rg1 caused LPS-treated B lymphocytes to be proliferative. Rd had greater proliferation activity than that of Rg1. In the murine model of antibody production, CACW combined with Rd [CACW/Rd/IFA] or Rg1 [CACW/Rg1/IFA] increased the production of antibodies specific to C. albicans when compared to the antibody production by [CACW/IFA]-induction, which was used as a negative control (P<0.05). In the case of [CFA/Rd/IFA], the antibody production was almost twice as that of the CFA. In addition, formulations containing either had a prolonged antibody inducing activity as compared to the CFA formula. In conclusion, Rd and Rg1 have an immunologic activity, and yet Rd can be a better candidate than Rg1 for a new immunoadjuvant.

BIPHASIC CULTURE STRATEGY BASED ON HYPEROSMOTIC PRESSURE FOR IMPROVED HUMANIZED ANTIBODY PRODUCTION IN CHINESE HAMSTER OVARY CELL CULTURE

  • Kim, Min-Su;Kim, No-Su;Seong, Yun-Hui;Lee, Gyun-Min
    • 한국생물공학회:학술대회논문집
    • /
    • /
    • pp.293-296
    • /
    • 2002
  • Hyperosmotic pressure increased specific antibody productivity ($q_{Ab}$) of recombinant CHO cells (SH2-0.32) while it depressed cell growth. Thus, the use of hyperosmolar medium did not increase the maximum antibody concentration substantially. To overcome this drawback, the feasibility of biphasic culture strategy was investigated. In the biphasic culture, cells were first cultivated in the standard medium with physiological osmolality(294 mOsm/kg) for cell growth. When cells reached the late exponential phase of growth, the spent standard medium was replaced with the fresh hyperosmolar medium (522 mOsm/kg) for antibody production. The ($q_{Ab}$) in growth phase with the standard medium was 2.1 ${\mu}g/10^6cell/day$ while the ($q_{Ab}$) in antibody production phase with the hyperosmolar medium (522 mOsm/kg) was 11.1 ${\mu}g/10^6cell/day$. Northern blot analysis showed a positive relationship between the relative contenet of Ig mRNA and ($q_{Ab}$), indicating that transcriptional regulation was involved in the response of rCHO cells to hyperosmotic pressure. Due to the enhanced ($q_{Ab}$) and increased cell concentration in biphasic culture, the maximum antibody concentration obtained in biphasic culture with 522 mOsm/kg medium exchange was 161% higher than that obtained in batch culture with the standard medium. Taken together, simple biphasic culture strategy based on hyperosmotic culture for improved foreign protein production from rCHO cells is effective in improving antibody production of rCHO cells.

  • PDF

Effects of Pear Alcoholic Fermentation Beverage on Airway Hyperresponsiveness and Immunoglobulin Production in Asthmatic Mice (배발효 음료가 천식이 유발된 생쥐의 기도 과민성 및 면역 글로불린 분비에 미치는 영향)

  • Joung, Young-Min;Kim, Hyung-Woo;Chung, Hee-Jin;Choi, Eu-Gene;Do, Yoon-Ho;Choi, Jeong-Sik;Cho, Su-In
    • The Korea Journal of Herbology
    • /
    • v.24 no.4
    • /
    • pp.107-113
    • /
    • 2009
  • Objectives : This study was designed to investigate the effects of alcoholic fermentation beverage using pear, Bae Ro Mi In (BRMI) on airway hyperresponsiveness and immunoglobulin production in asthmatic mice Methods : We investigated the effects of BRMI on airway hyperresponsiveness by measurement of enhanced pause (Penh), and also investigated the effects on production levels of antigen specific antibody and subclasses such as IgG1, IgG2a and IgE by using ELISA methods. Prednisolone (PD, 5 mg/kg) was used as positive control. Results : Treatment with BRMI did not lowered airway hyperresponsiveness, but PD lowered significantly. Oral administration of BRMI lowered production level of ovalbumin (OVA) specific total antibody significantly. Especially, BRMI decreased IgE levels compared to non-treated control effectively. Treatment with PD lowered production levels of total antibody, IgG1 and IgE. Conclusions : These result suggest that BRMI can lower production levels of antigen specific total antibody and IgE in asthmatic mice. We also suggest that BRMI has the possibility to prevent or cure asthma through regulation of antigen specific antibody production.

  • PDF

Effects of epitope sequence tandem repeat and proline incorporation on polyclonal antibody production against cytochrome 1A2 and 3A4

  • Ahn, Tae-Ho;Yun, Chul-Ho
    • BMB Reports
    • /
    • v.42 no.7
    • /
    • pp.418-420
    • /
    • 2009
  • We describe a method for producing polyclonal antibodies against peptide antigen cytochrome P450 1A2 and 3A4 using a tandem repeat of the epitope region and incorporation of proline residue between the repeated sequences. An ELISA assay revealed more efficient generation of polyclonal antibodies to tandem repeat peptide antigens than mono-epitope peptides. The incorporation of proline residues further stimulated antibody production.

Effects of Glucose and Acetic Acid on the Growth of Recombinant E.coli and the Production of Pyruvate Dehydrogenase Complex-E2 Specific Human Monoclonal Antibody (유전자 재조합 대장균의 세포성장과 Pyruvate Dehydrogenase Complex-E2 특이성 인간 모노클론 항체 생산에 대한 포도당과 초산의 영향)

  • 이미숙;전주미;차상훈;정연호
    • KSBB Journal
    • /
    • v.15 no.5
    • /
    • pp.482-488
    • /
    • 2000
  • The Fab fraction of PDC-E2 specific human monoclonal antibody was produced using recombinant E. coli, and the effects of glucose and acetate were investigated to develop an optimal strategy for recombinant human antibody production. Higher glucose concentration in the culture media resulted inn higher cell growth and glucose consumption rate, which in turn resulted in an increased acetate production rate. When glucose was depleted, cells began to consume acetate as an energy source, and this consumption rate depended on the glucose concentration. When the residual glucose concentration was high, the accumulation of acetate was accelerated due to an increase in the acetate production rate and a decrease in the acetate consumption rate. Futhermore, it was found that a high accumulation of acetate, accompanied by a high glucose concentration, inhibited human antibody formation; the critical acetate concentration was $0.6g/\ell$. During production, a high glucose concentration enhanced cell growth, but inhibited antibody formation due to catabolic repression. Therefore, it is important to keep the concentration of both glucose and acetate as low as possible to increase antibody production after induction. Accordingly, it is important to accurately control the concentration of glucose and acetate in the culture media to obtain high cell densities and high productivity levels of recombinant human antibody.

  • PDF

Influence of Temperature Shifts on Antibody Synthesis in the Oliver Flounder (Paralichthys olivaceus) Immunised with Formalin Killed Edwardsiella tarda Antigen

  • Jeong, Hyun-Do;Yoon, So-Hye;Jeong, Jun-Gi;Jun, Lyn-Jin;Jeong, Joon-Bum;Lee, June-Woo
    • Journal of fish pathology
    • /
    • v.19 no.3
    • /
    • pp.235-241
    • /
    • 2006
  • The effects of various temperature shifts on the kinetics of the humoral antibody response in oliver flounder, Paralichthys olivaceus, immunised with formalin-killed Edwardsiella tarda, were determined by measuring the antibody production in vivo and in vitro. When fish acclimated to a high temperature and immunised at that temperature were transferred to a lower temperature (22℃ to 12℃) at a various times after immunisation, the fish showed a weaker immune response than that achieved when the fish were kept at a high environmental temperature. However, in the converse experiment (12℃ to 22℃), the magnitude of the humoral immune response was recovered independent of the time of the transfer after immunisation at low temperature, even though the peak levels of each transferred group did not reach the level found in the positive control group that was maintained and immunised at a high environmental temperature. Hence, these studies provide some evidence that the potential for antibody production in B cells of oliver flounder immunized at high temperature is not impaired by subsequent exposure to low temperature.