• Title, Summary, Keyword: Alloy materials

Search Result 3,770, Processing Time 0.111 seconds

Fabrication and Tensile Properties of Alloy 617 base ODS Alloy (Alloy 617계 산화물 분산강화(ODS) 합금의 제조와 인장특성)

  • Min, Hyoung-Kee;Kang, Suk-Hoon;Kim, Tae-Kyu;Han, Chang-Hee;Kim, Do-Hyang;Jang, Jin-Sung
    • Journal of Korean Powder Metallurgy Institute
    • /
    • v.18 no.6
    • /
    • pp.482-487
    • /
    • 2011
  • Alloy 617, Ni-22Cr-12Co-9Mo base oxide dispersion strengthened alloy was fabricated by using mechanical alloying, hot isostatic pressing and hot rolling. Uniaxial tensile tests were performed at room temperature and at $700^{\circ}C$. Compared with the conventional Alloy 617, ODS alloy showed much higher yield strength and tensile strength, but lower elongation. Fracture surfaces of the tensile tested specimens were investigated in order to find out the mechanism of fracture mode at each test temperature. Grain adjustment during tensile deformation was analyzed by electron backscattered diffraction mapping, inverse pole figures and TEM observation.

The Influence of Alloy Composition on the Hot Tear Susceptibility of the Al-Zn-Mg-Cu Alloy System (Al-Zn-Mg-Cu계 알루미늄 합금의 열간 균열 특성에 미치는 합금조성의 영향)

  • Kim, Jee-Hun;Jo, Jae-Sub;Sim, Woo-Jeong;Im, Hang-Joon
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.9
    • /
    • pp.669-675
    • /
    • 2012
  • Hot tearing was the most significant casting defect when the castability evaluation of the Al-Zn-Mg-Cu alloy system was conducted. It was related to the solidification range of the alloy. Therefore, the hot tear susceptibility of the AA7075 alloy, whose solidification range is the widest, was evaluated. The hot tear susceptibility was evaluated by using a mold for a hot tearing test designed to create the condition for the occurrence of hot tear in 8 steps. According to the tearing location and shape, a hot tear susceptibility index (HTS) score was measured. The solidification range of each alloy and hot tear susceptibility was compared and thereafter the microstructure of a near tear defect was observed. As a result, the HTS of the AA7075 alloy was found to be 67. Also, the HTS in relation to a change in Zn, Mg, Cu composition showed a difference of about 6-11% compared to the AA7075 alloy.

THE AMOUT OF LOSS AND THE DEGREE OF SURFACE SMOOTHNESS OF GOLD ALLOY BY GOLD ALLOY POLISHING RUBBER POINT MATERIALS (금합금 연마재 종류에 따른 금합금 소실량과 연마 정도)

  • Kim, Myoung-Hwa;Yim, Soon-Ho;Chung, Moon-Kyu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.2
    • /
    • pp.277-295
    • /
    • 1997
  • After clinical adjustment of dental casting restoration, re-polishing procedure is recommanded because the smooth gold sureface is lost. But there is the possibility to get more loose contact than that intended by loss of gold alloy according to the kinds of polishing materials and polishing time. Therefore in this study I polished type II gold alloy with 390gm force, 20,000rpm speed, and 8 kinds of gold alloy polishing materials, fabricated by 4 companies and then measured the amount of loss of gold alloy with Surfcorder SEF-30D and observed alloy surfaces polished by 3 brown rubber points with SEM. The amount of loss of gold alloys polished with 8 kinds of polishing materials and the degree of smoothness of gold alloys according to polishing time and polishing materials were compared. The following results were obtained : 1. When the amount of loss of gold alloys polished with 3 kinds of brown rubber point was compared, Alphalex brown point had the most amount of alloy loss, followed in decreasing order by Shofu brown point and Eveflex brown point. There was statistically significant difference in the amount of alloy loss according to polishing materials. 2. When the amount of loss of gold alloys polished with 5 kinds of green rubber point was compared, Shofu green point had the most amount of alloy loss, followed in decreasing order by Alphaflex green point, Dedeco green clasp polisher, and Eveflex green point. There was statistically significant difference in the amount of alloy loss according to polishing materials except Alphaflex green point and Dedeco green clasp polisher. 3. When the amount of loss of gold alloys polished with all kinds of rubber point was compared, there was no significant difference in Eveflex brown point, Alphaflex green point, and Dedeco green clasp polisher. 4. When average amount of alloy loss per 1 revolution by polishing materials was compared, Alphalex brown point had the greatest value as $0.329{\mu}m$ and Shofu supergreen point had the lowest value as $0.022{\mu}m$. 5. When the degree of sureface smoothness of gold alloy polished with 3 kinds of brown rubber point was compared, In Alphalex brown point surface roughness was completely lost after 20 seconds polishing time, in Shofu brown point 30 seconds, in Eveflex brown point 40 seconds. But in every gold alloys fine scratch formed by rubber points was observed. Based on the results of this study, as rubber polishing materials used in polishing of dental casting restoration after clinical adjustment influenced on the tightness of occlusal or proximal contact, we should make dental casting restoration with minimum error through careful laboratory procedure and form very smooth surface of restoration with tripoli and rouge after use of silicone polishing materials.

  • PDF

Effect of Microstructure on the Environmentally Induced Cracking Behavior of Al-Zn-Mg-Cu-Zr Aluminum Alloy

  • Ghosh, Rahul;Venugopal, A.;Pradeep, PI;krishna, L. Rama;Narayanan, P. Ramesh;Pant, Bhanu;Cherian, Roy M
    • Corrosion Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.101-108
    • /
    • 2018
  • AA7010 is an Al-Zn-Mg-Cu alloy containing Zr, developed as an alternate to traditional AA7075 alloy owing to their high strength combined with better fracture toughness. It is necessary to improve the corrosion resistance and surface properties of the alloy by incorporating plasma electrolytic oxidation (PEO) method. AA7010-T7452 aluminum alloy has been processed through the forging route with multi-stage working operations, and was coated with $10{\mu}m$ thick $Al_2O_3$ ceramic aluminina coating using the plasma electrolytic oxidation (PEO) method. The corrosion, stress corrosion cracking (SCC) and nano-mechanical behaviours were examined by means of potentiodynamic polarization, slow strain rate test (SSRT) and nano-indentation tests. The results indicated that the additional thermomechanical treatment during the forging process caused a fully recrystallized microstructure, which lead to the poor environmental cracking resistance of the alloy in 3.5% NaCl solution, despite the overaging treatment. Although the fabricated PEO coating improved general corrosion resistance, the brittle nature of the coating did not provide any improvement in SCC resistance of the alloy. However, the hardness and elastic modulus of the coating were significantly higher than the base alloy.

Outer Diameter Stress Corrosion Cracking Susceptibility of Steam Generator Tubing Materials (증기발생기 전열관 재료의 2차측 응력부식균열 민감성)

  • Kim, Dong-Jin;Kim, Hyun Wook;Kim, Hong Pyo
    • Corrosion Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.118-124
    • /
    • 2011
  • Alloy 600 (Ni 75 wt%, Cr 15 wt%, Fe 10 wt%) as a heat exchanger tube of the steam generator (SG) in nuclear power plants (NPP) has been degraded by various corrosion mechanism during the long-term operation. Especially lead (Pb) is known to be one of the most deleterious species in the secondary system causing outer diameter stress corrosion cracking (ODSCC). Oxide formation and breakdown is requisite for SCC initiation and propagation. Therefore it is expected that a property change of the oxide formed on SG tubing materials by lead addition into a solution is closely related to PbSCC. In the present work, the SCC susceptibility was assessed by using a slow strain rate test (SSRT) in caustic solutions with and without lead for Alloy 600 and Alloy 690 (Ni 60 wt%, Cr 30 wt%, Fe 10 wt%) used as an alternative of Alloy 600 because of outstanding superiority to SCC. The results were discussed in view of the oxide property formed on Alloy 600 and Alloy 690. The oxides formed on Alloy 600 and Alloy 690 in aqueous solutions with and without lead were examined by using a transmission electron microscopy (TEM), equipped with an energy dispersive x-ray spectroscopy (EDXS).

The Sliding Wear behavior of Fe-Cr-C-Si Alloy in Pressurized Water (Fe-Cr-C-Si 계 경면처리 합금의 고압ㆍ수중 마모거동)

  • Lee, Kwon-yeong;Lee, Min-Woo;Oh, Young-Min;;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.13 no.4
    • /
    • pp.224-227
    • /
    • 2003
  • The sliding wear behavior of a Fe-base hardfacing alloy was investigated in the temperature range of $25∼250^{\circ}C$ under a contact stress of 15 ksi (103 MPa). The wear loss of this Alloy in pressurized water was less than that of NOREM 02. And galling did not occurred at this alloy in all temperature ranges. It was considered that the wear resistance of this Alloy was attributed to the strain-induced phase transformation from austenite to $\alpha$'martensite during sliding wear.

Wear characteristics of High Carbon 9CrSi Alloy Steel of Laser Surface Cladding (Laser Surface Cladding 고탄소 9CrSi 합금강의 마모 특성)

  • Yu, Neung-Hui;Gang, Seong-Gun
    • Korean Journal of Materials Research
    • /
    • v.11 no.10
    • /
    • pp.813-819
    • /
    • 2001
  • The microstructure and the distribution of hardness of Co and A1 alloy powder cladding layer in high carbon 9CrSi alloy steel for roll materials cladded by laser surface cladding were investigated. And, for the evaluation of soundness as the roll materials, we examined the wear resistance of the cladding materials with the wear appratus of pin on disc type. The experimental results showed that the microstructure of laser cladding layer was constituted with the clad surface layer, the alloy layer, the heat treatment layer with base metal. The wear resistance of Ni alloy Powder cladding material was superior to that of Co alloy powder cladding material both at the low speed (0.46m/s) and the high speed(0.92m/s). It seemed that the behavior of wear showed the abrasive wear at the early stage and the adhesive wear at the late stage.

  • PDF

Effect of Hot-forging on NiTi Shape Memory Alloy Fibers Reinforced Mg Alloy Composite

  • Guo, Qi;Li, Gang;Tang, Renjian;Yan, Biao
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • /
    • pp.846-847
    • /
    • 2006
  • The composite used in this paper was prepared by hot-pressing ball-milled Mg alloy powders, in which NiTi shape memory alloy fibers in a row were sandwiched. The microstructure and property were examined. It is shown that the composite consisted of a homogenous matrix with uniformly distributed NiTi shape memory alloy fibers, recrystallization took place in the Mg alloy matrix which was subjected to plastic deformation an adequate bonding formed between the matrix and fibers; the density and tensile strength of the composite increased after the hot-forging; the hot-forging process is capable of improving properties of the composite.

  • PDF

Microstructural Features of Multicomponent FeCoCrNiSix Alloys

  • Kong, Kyeong Ho;Kim, Kang Cheol;Kim, Won Tae;Kim, Do Hyang
    • Applied Microscopy
    • /
    • v.45 no.1
    • /
    • pp.32-36
    • /
    • 2015
  • The microstructural features of FeCoCrNi, FeCoCrNiAl and FeCoCrNiSix (x=0, 5, 10, 15, 20) alloys have been investigated in the present study. The microstructure of FeCoCrNi alloy changes dramatically with equiatomic addition of Al. The fcc irregular shaped grain structure in the as-cast FeCoCrNi alloy changes into the bcc interconnected structure with phase separation of Al-Ni rich and Cr-Fe rich phases in the as-cast FeCoCrNiAl alloy. The microstructure of FeCoCrNi alloy changes with the addition of Si. With increasing the amount of Si, the fcc structure of the grains is maintained, but new phase containing higher amount of Si forms at the grain boundary. As the amount of Si increases, the fraction the Si-rich grain boundary phase increases.

The Effects of Amorphization on Hydrogen Absorption Properties of Zr57V36Fe7 Getter alloy (게터용 Zr57V36Fe7 합금의 수소 흡수특성에 미치는 비정질화의 영향)

  • Park Je-Shin;Suh Chang-Youl;Kim Won-Baek
    • Korean Journal of Materials Research
    • /
    • v.15 no.12
    • /
    • pp.802-808
    • /
    • 2005
  • The hydrogen sorption speeds of $Zr_{57}V_{36}Fe_7$ amorphous alloy and its crystallized alloys were evaluated at room temperature $Zr_{57}V_{36}Fe_7$ amorphous alloy was prepared by ball milling. The amorphous alloy was crystallized through two stages. Initially, $\alpha-Zr$ solid solution was appeared from the amorphous phase. Two cubic Laves compounds were precipitated afterwards from the remained amorphous and from excessively saturated solid solution at higher temperature. The hydrogen sorption speed of the partially crystallized alloy was higher than that of amorphous. The enhanced sorption speed of partially crystallized alloy was explained in terms of surface oxygen stability which has been known to retard the activation of amorphous alloys. The retardation could be reduce by crystallization process resulting in the observed increase in sorption property.