• Title, Summary, Keyword: Airborne Radar

Search Result 91, Processing Time 0.085 seconds

A Design and Fabrication of Test Equipment for Airborne Tracking Radar Test (항공기용 추적레이더 시험을 위한 시험장비의 설계 및 제작)

  • Yoon, Seung-Gu;Park, Seung-wook;Kwon, Jun-Bum;Jung, Man-Seek
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.352-361
    • /
    • 2017
  • This paper proposes a design and fabrication of the test equipment that is implemented as a part of the airborne tracking radar inspection under the environment of indoor simulation. This test equipment provides controlling the operation status of airborne tracking radar and replicating the velocity and range information of target by generating a variety of target signal. This is mainly composed of radar operation controller, target signal generator, horn antenna driving devices. Radar operation controller is able to perform the controlling of radar operation mode and monitoring in real time by serial communication. Target signal generator is generated doppler signal and range delayed signal using virtual target of RF-band. Horn antenna driving devices perform a role of target simulating exercise. In the end, the performance is demonstrated using experiment results of test equipment for airborne tracking radar.

Application Design and Performance Analysis Simulation of Sigma-Delta STAP for GMTI Mode of Airborne Radar (항공기 레이다의 GMTI 모드를 위한 Sigma-Delta STAP의 적용 설계와 성능 분석 시뮬레이션)

  • Kim, Tae-Hyung;Yoon, Jong-Suk;Jung, Jae-Hoon;Ryu, Seong-Hyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.4
    • /
    • pp.336-346
    • /
    • 2017
  • Applications of Sigma-Delta STAP, and a method of GMTI processing are presented for GMTI(Ground Moving Target Indication) mode of airborne radar with sigma, delta, and guard channels. We showed results of performance analyses of presented methods by clutter simulation with ICM(Internal Clutter Motion), signal processing simulation and MDV(Minimum Detectable Velocity). Presented methods for Sigma-Delta STAP and GMTI processing are easy to apply practically in GMTI mode of airborne radar without restriction by specific airborne radar system.

Moving Clutter Signal Measurement and Its Spectral Analysis for Airborne Pulse Doppler Radar (비행 탑재 레이다의 이동 클러터 신호 수집 및 도플러 스팩트럼 특성 분석)

  • Jeun, In-Pyung;Choi, Min-Su;Hwang, Kwang-Yun;Kwag, Young-Kil
    • Proceedings of the IEEK Conference
    • /
    • /
    • pp.439-442
    • /
    • 2005
  • An airborne radar performance can be sensitive to the variation of the Doppler center frequency and the spectral spread of the ground clutter return due to the radar platform moving and aspect angle of the scanning beam to the target. In this paper, for the performance test of the airborne pulsed Doppler radar system developed, the high-speed radar data acquisition system is implemented for acquiring the raw radar signal in real-time. Based on the various test scenarios from airborne-platform to the moving platform, the various radar target and clutter signals are collected and their spectrum is analyzed for the verification of the radar performance in the real-time flight test environments.

  • PDF

A Helicopter-borne Pulse Doppler Radar Signal Processor Development (헬기탑재 펄스 도플러 레이다 신호처리기 개발)

  • Kwag, Young-Kil;Jeun, In-Pyung;Choi, Min-Su;Hwang, Gwang-Yeon;Lee, Kang-Hoon;Lee, Jae-Ho
    • Proceedings of the IEEK Conference
    • /
    • /
    • pp.443-446
    • /
    • 2005
  • This paper presents the results of the design and implementation of the airborne pulse doppler radar signal processor using high multi-DSP for the multi-function radar capability such as short-range, midium-range, and long-range depending on the mission of the vehicle. Particularly, the radar signal processor is developed using two DSP boards in parallel for the various radar signal processing algorithm. The key algorithms include LFM chirp waveform-based pulse compression, MTI clutter filter, MTD processor, adaptive CFAR, and clutter map. Especially airborne moving clutter Doppler spectrum compensation algorithm such as TACCAR is implemented for the multi-mode airborne radar system. The test results shows the good Doppler spectral separation for the clutter and the moving target in the flight test environment using helicopter

  • PDF

Integrated Simulator of Airborne Multi-function Radar Resource Manager and Environment Model (항공기용 다기능 레이더 자원 관리자 및 환경 통합 시뮬레이터)

  • Park, Jung-Woo;Jang, Dae-Sung;Choi, Han-Lim;Tahk, Min-Jea;Roh, Ji-Eun;Kim, Seon-Joo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.7
    • /
    • pp.577-587
    • /
    • 2013
  • In this paper, an integrated radar resource manager for an airborne multi-function radar and a radar-environment simulator are presented. The radar-environment simulator includes target detection/measurement models, a nonlinear tracking filter for the airborne radar and an effective target generation algorithm. The structures and functions of modules in the radar resource manager are established and validated by the radar-environment simulator.

A Helicopter-borne Pulse Doppler Radar Signal Processor Development using High Speed Multi-DSP (고속 Multi-DSP를 이용한 헬기탑재 펄스 도플러 레이다 신호처리기 개발)

  • Kwag, Young-Kil;Choi, Min-Su;Jeun, In-Pyung;Hwang, Gwang-Yeon;Lee, Kang-Hoon;Lee, Jae-Ho
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • /
    • pp.23-28
    • /
    • 2005
  • An airborne radar is an essential aviation electronic system of the helicopter to perform various missions in all-weather environments. This paper presents the results of the design and implementation of the airborne pulse doppler radar signal processor using high multi-DSP for the multi-function radar capability such as short-range, midium-range, and long-range depending on the mission of the vehicle. Particularly, the radar signal processor is developed using two DSP boards in parallel for the various radar signal processing algorithm. The key algorithms include LFM chirp waveform-based pulse compression, MTI clutter filter, MTD processor, adaptive CFAR, and clutter map. Especially airborne moving clutter Doppler spectrum compensation algorithm such as TACCAR is implemented for the multi-mode airborne radar system. The test results shows the good Doppler spectral separation for the clutter and the moving target in the flight test environment using helicopter.

  • PDF

Real-Time PRF Selection for Search/Track in MPRF Waveform Airborne Radar (MPRF 파형을 사용하는 항공기 레이더에서 탐색/추적을 위한 실시간 PRF 선택)

  • Kim, Tae-Hyung;Kim, Eun-Hee;Lee, Sung-Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.10
    • /
    • pp.1050-1061
    • /
    • 2014
  • Airborne radar usually use MPRF(medium PRF) waveforms to detect and track look-down or all-directions air-to-air targets. To use MPRF waveforms, airborne radar have to operate optimal PRF schedules and select optimal PRFs able to detect look-down air-to-air targets, overcoming look-down clutter and resolving range/velocity ambiguities. In this paper, we propose a real-time search method for the optimal(and sub-optimal) PRFs able to detect and track targets in real-time change of situation for MPRF pulsed-Doppler airborne radars.

Design and implementation of signal processing system for airborne active homing radar

  • Lee, Young-Sung;Kim, Doh-Hyun;Kim, Lee-Han;Kim, Young-Chae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • /
    • pp.158.2-158
    • /
    • 2001
  • This paper introduces the design and implementation of a signal processing system for an airborne active homing radar system. This airborne active homing radar system uses the pulse Doppler radar of high PRF (Pulse Repetition Frequency) for computation of exact relative velocity of the target. This system carries out two operations mainly. The first is to transmit and receive microwave signal through the antenna. The second is to calculate the relative velocity of the target taking advantage of the Doppler frequency signal reflected from the target and detect the angle error between a target and an antenna LOS (Line Of Sight) to make the antenna direction coincident with the target. The signal processing system has a role of the latter.

  • PDF

Time-Domain Model of Surface Clutter for Airborne Phase-Array Radar (항공기 위상 배열 레이더에서 시간 영역의 지상클러터 생성 모델)

  • Kim, Tae-Hyung;Kim, Eun-Hee;Kim, Seon-Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.7
    • /
    • pp.730-736
    • /
    • 2013
  • Time-domain clutter generation model for airborne pulse doppler phase-array radar is presented. Time-domain surface clutter signal is generated assuming earth of a sphere and considering geometry of a clutter patch, and generation of sub-array clutter signal is presented. The generated sub-array clutter signal can be used by simulation input signal in various radar applications of DBF(Digital Beamforming), ABF(Adaptive Beamforming), Stap(Space-Time Adaptive Processing) and etc.

Airborne Pulsed Doppler Radar Development (비행체 탑재 펄스 도플러 레이다 시험모델 개발)

  • Kwag, Young-Kil;Choi, Min-Su;Bae, Jae-Hoon;Jeon, In-Pyung;Yang, Ju-Yoel
    • The Journal of Advanced Navigation Technology
    • /
    • v.10 no.2
    • /
    • pp.173-180
    • /
    • 2006
  • An airborne radar is an essential aviation electronic system of the aircraft to perform various missions in all weather environments. This paper presents the design, development, and test results of the multi-mode pulsed Doppler radar system test model for helicopter-borne flight test. This radar system consists of 4 LRU units, which include ANTU(Antenna Unit), TRU(Tx Rx Unit), RSDU(Radar Signal & Data Processing Unit) and DISU(Display Unit). The developed technologies include the TACCAR processor, planar array antenna, TWTA transmitter, coherent I/Q detector, digital pulse compression, DSP based Doppler FFT filtering, adaptive CFAR, IMU, and tracking capability. The design performance of the developed radar system is verified through various helicopter-borne field tests including MTD (Moving Target Detector) capability for the Doppler compensation due to the moving platform motion.

  • PDF