• Title, Summary, Keyword: Adaptive equivalent circuit method

Search Result 13, Processing Time 0.113 seconds

An Improved Distributed Equivalent Circuit Modeling for RF Components by Real-Coefficient AFS Technique

  • Kim, Koon-Tae;Ko, Jae-Hyeong;Paek, Hyun;Kahng, Sung-Tek;Kim, Hyeong-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.408-413
    • /
    • 2011
  • In this paper, a real-coefficient approach to Adaptive Frequency Sampling (AFS) technique is developed for efficient equivalent circuit modeling of RF components. This proposed method is advantageous than the vector fitting technique and the conventional AFS method in terms of fewer samples leading to a lower order of a rational function on a given data and to a direct conversion to an equivalent circuit for PSPICE(Personal Simulation Program with Integrated Circuit Emphsis) simulation, respectively. To validate the proposed method, the distributed equivalent circuit of a presented multi-layered RF low-pass filter is obtained using the proposed real-coefficient AFS, and then comparisons with EM simulation and circuit simulation for the device under consideration are achieved.

Equivalent Circuit Modeling applying Adaptive Frequency Sampling (Adaptive Frequency Sampling 을 이용한 등가회로 모델링)

  • Paek, Hyun;Kim, Koon-Tae;Kahng, Sung-Tek;Kim, Hyeong-Seok
    • 한국정보통신설비학회:학술대회논문집
    • /
    • /
    • pp.281-284
    • /
    • 2009
  • In this paper, we propose a method that applies Adaptive Frequency Sampling(AFS) technique to the equivalent circuit model for RF passive components. Thes days wireless communication system is getting smaller and smaller. So EMI/EMC is an issue in RF. We can solve PI(Power Integrity)/SI(Signal Integrity) that one of EMI/EMC problem apply IFFT for 3D EM simulation multiple with input signal. That is time comuming task. Therefore equivalent circuit model using RF passive component is important. AFS schemes are implemented to obtain the rational functions. S parameters of the equivalent circuit moldel is compared to those of EM simulation in case of the microstrip line structure.

  • PDF

Analysis of Parameters Influence on the Characteristics of Thomson Coil Type Actuator of Arc Eliminator Using Adaptive Segmentation Equivalent Circuit Method

  • Li, Wei;Jeong, Young-Woo;Yoon, Hee-Sung;Koh, Chang-Seop
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.282-289
    • /
    • 2010
  • A Thomson coil type actuator is applied as the driving unit in an arc eliminator system. To eliminate the arc efficiently, the speed of the actuator is required as fast as possible with certain limit of the exciting current. Therefore, the dynamic characteristics of the Thomson coil type actuator should be analyzed in an effective way. In this paper, a novel solving technique has been developed based on the equivalent circuit model which is set up by dividing the conducting plate into multi segments. To guarantee the calculation accuracy and improve the calculation efficiency, an adaptive refinement algorithm is suggested based on the field continues condition. The proposed method has been verified by the FEM calculation and experiment. The influence of circuit and plate parameters to the performance of the actuator is also investigated, from which a reasonable set of parameters can be found.

Study of equivalent circuit modeling for microstrip structure using passive component (수동소자를 이용한 마이크로스트립 구조의 등가회로 모델링에 관한 연구)

  • Paek, Hyun;Kim, Kun-Tae;Kwon, So-Hyun;Kahng, Sung-Tek;Kim, Hyeong-Seok
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.1434-1435
    • /
    • 2008
  • In this paper, we propose a method that applies Vector Fitting(VF) and Adaptive Frequency Sampling(ASF) technique to the equivalent circuit model for RF passive components. VF and ASF schemes are implemented to obtain the rational functions. S parameters of the equivalent circuit model is compared to those of EM simulation in case of the microstrip structure with coupled bandpass filter.

  • PDF

Shape Optimization of a Thomson Coil Actuator for Fast Response Using Topology Modification

  • Li, Wei;Koh, Chang-Seop
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.58-63
    • /
    • 2012
  • The shape optimization of a Thomson coil actuator used in an arc eliminator is done for fast response by adopting topology modification method. The displacement of the plate in a fixed calculation time is taken as the objective function. The objective function and contribution factor are calculated by using an adaptive equivalent circuit method which has been proved accurate and efficient. Both shape optimization and performance analysis are accomplished based on the segmentation of plate. Through the refinement of the sensitive segments a precise optimal plate shape can be obtained. The effectiveness of the proposed method is proved by the comparison of results before and after the shape optimization.

Shape Optimization of a Thomson Coil Actuator for Fast Response Using Topology Modification

  • Li, Wei;Koh, Chang-Seop
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.3
    • /
    • pp.330-335
    • /
    • 2012
  • The shape optimization of a Thomson coil actuator used in an arc eliminator is done for fast response by adopting topology modification method. The displacement of the plate in a fixed calculation time is taken as the objective function. The objective function and contribution factor are calculated by using an adaptive equivalent circuit method which has been proved accurate and efficient. Both shape optimization and performance analysis are accomplished based on the segmentation of plate. Through the refinement of the sensitive segments a precise optimal plate shape can be obtained. The effectiveness of the proposed method is proved by the comparison of results before and after the shape optimization.

Dynamic Characteristics Analysis of High Speed Thomson-coil Arc Eliminator Using Equivalent Electric Circuit Method with Adaptive Segmentation of conducting Plate

  • Li, Wei;Lu, Jiang;Jeong, Young-Woo;Koh, Chang-Seop
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.90-92
    • /
    • 2008
  • A novel solving technique has been developed to analyze the dynamic characteristics of high speed Thomson-coil arc eliminator. The electromagnetic repulsion actuator based on Thomson-coil is taken as the driving part of the arc eliminator, due to which, the opening and closing time is quite short compare to other type actuators. The electromagnetic repulsion actuator is composed of one repulsion plate and two fixed coils, corresponding to the opening coil and closing coil, respectively. The new solving technique is derived based on the equivalent electric circuit model of the system which is set up by dividing the repulsion plate into multi segments using adaptive segmentation method. This solving technique is applied to the dynamic characteristic analysis of electromagnetic repulsion actuators in high speed Thomson-coil arc eliminators. The calculation results are testified by the FEM calculation results and experiment results.

  • PDF

All-dielectric planar solar cells with multilayer ARC and non-periodic DBR nanolayers based on transmission line equivalent circuit

  • Salehi, Mohammad Reza;Shahraki, Mojtaba;Abiri, Ebrahim
    • Current Applied Physics
    • /
    • v.17 no.7
    • /
    • pp.913-923
    • /
    • 2017
  • In this paper, an analytical approach based on transmission line equivalent circuit (TLEC) is used to model planar solar cells. The proposed method has been applied to the all-dielectric planar solar cells with multilayer anti-reflection coating (ARC) and non-periodic distributed Bragg reflector (DBR) nanolayers. This analytical approach is very efficient and easy to be implemented. Consequently, it is straightforward to employ several optimization procedures to determine the optimum thickness for different layers. In this paper, optimization process according to the Fuzzy adaptive modified particle swarm optimization (FAMPSO) algorithm is utilized to maximize the absorption enhancement of these types of solar cells. Results demonstrate the possibility of wideband absorption in all-dielectric planar solar cells and comparable to the conventional light trapping structures.

Adaptive State-of-Charge Estimation Method for an Aeronautical Lithium-ion Battery Pack Based on a Reduced Particle-unscented Kalman Filter

  • Wang, Shun-Li;Yu, Chun-Mei;Fernandez, Carlos;Chen, Ming-Jie;Li, Gui-Lin;Liu, Xiao-Han
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1127-1139
    • /
    • 2018
  • A reduced particle-unscented Kalman filter estimation method, along with a splice-equivalent circuit model, is proposed for the state-of-charge estimation of an aeronautical lithium-ion battery pack. The linearization treatment is not required in this method and only a few sigma data points are used, which reduce the computational requirement of state-of-charge estimation. This method also improves the estimation covariance properties by introducing the equilibrium parameter state of balance for the aeronautical lithium-ion battery pack. In addition, the estimation performance is validated by the experimental results. The proposed state-of-charge estimation method exhibits a root-mean-square error value of 1.42% and a mean error value of 4.96%. This method is insensitive to the parameter variation of the splice-equivalent circuit model, and thus, it plays an important role in the popularization and application of the aeronautical lithium-ion battery pack.

Multiple Model Adaptive Estimation of the SOC of Li-ion battery for HEV/EV (다중모델추정기법을 이용한 HEV/EV용 리튬이온전지의 잔존충전용량 추정)

  • Jung, Hae-Bong;Kim, Young-Chol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.142-149
    • /
    • 2011
  • This paper presents a new state of charge(SOC) estimation of large capacity of Li-ion battery (LIB) based on the multiple model adaptive estimation(MMAE) method. We first introduce an equivalent circuit model of LIB. The relationship between the terminal voltage and the open circuit voltage(OCV) is nonlinear and may vary depending on the changes of temperature and C-rate. In this paper, such behaviors are described as a set of multiple linear time invariant impedance models. Each model is identified at a temperature and a C-rate. These model set must be obtained a priori for a given LIB. It is shown that most of impedances can be modeled by first-order and second-order transfer functions. For the real time estimation, we transform the continuous time models into difference equations. Subsequently, we construct the model banks in the manner that each bank consists of four adjacent models. When an operating point of cell temperature and current is given, the corresponding model bank is directly determined so that it is included in the interval generated by four operating points of the model bank. The MMAE of SOC at an arbitrary operating point (T $^{\circ}C$, $I_{bat}$[A]) is performed by calculating a linear combination of voltage drops, which are obtained by four models of the selected model bank. The demonstration of the proposed method is shown through simulations using DUALFOIL.