• Title, Summary, Keyword: Accelerometer Sensor

Search Result 487, Processing Time 0.038 seconds

Character Tracking for Using an Accelerometer Sensor (Accelerometer Sensor를 이용한 문자 추적에 관한 고찰)

  • 여영호;배명수;손수국;유진용
    • Proceedings of the IEEK Conference
    • /
    • /
    • pp.43-46
    • /
    • 2002
  • This paper is about the Micro Accelerometer Sensor that collect the human's writing patterns so as to process its signals. Finally, we pursue the accuracy of digital data about the writing pattern and hope to discuss the possibility of the Micro Accelerometer Sensor Besides, we researched the compensation of signal distortion due to tiIt and analyzed the noise error in order to improve its accuracy.

  • PDF

Development of a single-structured MEMS gyro-accelerometer

  • Sung, Woon-Tahk;Lee, Jang-Gyu;Kang, Tae-Sam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • /
    • pp.592-595
    • /
    • 2004
  • This paper presents a study on the development of a multi-sensing inertial sensor with a single mechanical structure, which can be used both as a gyroscope and an accelerometer. The proposed MEMS gyro-accelerometer is designed to detect the angular rate and the acceleration at the same time using two separate detection circuits for one proof mass. In this study, the detection and signal processing circuit for an effective signal processing of different inertial measurements is designed, fabricated, and tested. The experimental results show that the performances of the gyro-accelerometer have resolutions of 1mg and 0.025deg/sec and nonlinearities of less than 0.5% for the accelerometer and the gyroscope, respectively, which are similar results with those of sensors with different structures and different detection circuits. The size of the sensor is reduced almost by 50% comparing with the sensors of separated proof mass.

  • PDF

Human Activity Recognition using an Image Sensor and a 3-axis Accelerometer Sensor (이미지 센서와 3축 가속도 센서를 이용한 인간 행동 인식)

  • Nam, Yun-Young;Choi, Yoo-Joo;Cho, We-Duke
    • Journal of Internet Computing and Services
    • /
    • v.11 no.1
    • /
    • pp.129-141
    • /
    • 2010
  • In this paper, we present a wearable intelligent device based on multi-sensor for monitoring human activity. In order to recognize multiple activities, we developed activity recognition algorithms utilizing an image sensor and a 3-axis accelerometer sensor. We proposed a grid?based optical flow method and used a SVM classifier to analyze data acquired from multi-sensor. We used the direction and the magnitude of motion vectors extracted from the image sensor. We computed the correlation between axes and the magnitude of the FFT with data extracted from the 3-axis accelerometer sensor. In the experimental results, we showed that the accuracy of activity recognition based on the only image sensor, the only 3-axis accelerometer sensor, and the proposed multi-sensor method was 55.57%, 89.97%, and 89.97% respectively.

Geometric moire fringe fiber optic accelerometer system for monitoring civil infrastructures (토목 구조물 건전성 평가를 위한 무아레 프린지 기법 광섬유 가속도계 시스템 개발)

  • Kim, Dae-Hyun;Feng, Maria Q.
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.40-46
    • /
    • 2006
  • This paper presents a novel fiber optic accelerometer system for monitoring vibration of large-size structures. The system is composed of one (or multiple) sensor head, a light control unit and a signal processing unit. The sensing mechanism of the sensor head is based on a novel integration of the moire fringe phenomenon with fiber optics to achieve a robust performance in addition to its immunity to EM interference, easy cabling, and low cost. In this paper, a prototype of the fiber optic accelerometer system has been developed successfully. A low-cost light control unit has been developed to drive the system's optic and electronic components. A unique algorithm has also been developed to derive the sensor's acceleration from the raw signals of the light control unit; it is implemented via a separate signal processing unit. Finally, the shaking table tests successfully demonstrate the performance and the potential of the moire fringe fiber optic sensor system to monitor the health of civil infrastructures.

Study on Vertical Velocity-Based Pre-Impact Fall Detection (수직속도 기반 충격전 낙상 감지에 관한 연구)

  • Lee, Jung Keun
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.251-258
    • /
    • 2014
  • While the feasibility of vertical velocity as a threshold parameter for pre-impact fall detection has been verified, effects of sensor attachment locations and methods calculating vertical acceleration and velocity on the detection performance have not been studied yet. Regarding the vertical velocity-based pre-impact fall detection, this paper investigates detection accuracies of eight different cases depending on sensor locations (waist vs. sternum), vertical accelerations (accurate acceleration based on both accelerometer and gyroscope vs. approximated acceleration based on only accelerometer), and vertical velocities (velocity with attenuation vs. velocity difference). Test results show that the selection of waist-attached sensor, accurate acceleration, and velocity with attenuation based on accelerometer and gyroscope signals is the best in overall in terms of sensitivity and specificity of the detection as well as lead time.

Detecting User Activities with the Accelerometer on Android Smartphones

  • Wang, Xingfeng;Kim, Heecheol
    • Journal of Multimedia Information System
    • /
    • v.2 no.2
    • /
    • pp.233-240
    • /
    • 2015
  • Mobile devices are becoming increasingly sophisticated and the latest generation of smartphones now incorporates many diverse and powerful sensors. These sensors include acceleration sensor, magnetic field sensor, light sensor, proximity sensor, gyroscope sensor, pressure sensor, rotation vector sensor, gravity sensor and orientation sensor. The availability of these sensors in mass-marketed communication devices creates exciting new opportunities for data mining and data mining applications. In this paper, we describe and evaluate a system that uses phone-based accelerometers to perform activity recognition, a task which involves identifying the physical activity that a user is performing. To implement our system, we collected labeled accelerometer data from 10 users as they performed daily activities such as "phone detached", "idle", "walking", "running", and "jumping", and then aggregated this time series data into examples that summarize the user activity 5-minute intervals. We then used the resulting training data to induce a predictive model for activity recognition. This work is significant because the activity recognition model permits us to gain useful knowledge about the habits of millions of users-just by having them carry cell phones in their pockets.

Improvement of Dynamic Respiration Monitoring Through Sensor Fusion of Accelerometer and Gyro-sensor

  • Yoon, Ja-Woong;Noh, Yeon-Sik;Kwon, Yi-Suk;Kim, Won-Ki;Yoon, Hyung-Ro
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.334-343
    • /
    • 2014
  • In this paper, we suggest a method to improve the fusion of an accelerometer and gyro sensor by using a Kalman filter to produce a more high-quality respiration signal to supplement the weakness of using a single accelerometer. To evaluate our proposed algorithm's performance, we developed a chest belt-type module. We performed experiments consisting of aerobic exercise and muscular exercises with 10 subjects. We compared the derived respiration signal from the accelerometer with that from our algorithm using the standard respiration signal from the piezoelectric sensor in the time and frequency domains during the aerobic and muscular exercises. We also analyzed the time delay to verify the synchronization between the output and standard signals. We confirmed that our algorithm improved the respiratory rate's detection accuracy by 4.6% and 9.54% for the treadmill and leg press, respectively, which are dynamic. We also confirmed a small time delay of about 0.638 s on average. We determined that real-time monitoring of the respiration signal is possible. In conclusion, our suggested algorithm can acquire a more high-quality respiration signal in a dynamic exercise environment away from a limited static environment to provide safer and more effective exercises and improve exercise sustainability.

A Study on the Accelerometer for the Acceleration and Inclination Estimation of Structures using Double-FBG Optical Sensors (이중 FBG 광섬유센서를 이용한 구조물 가속도 및 기울기 측정 장치에 관한 연구)

  • Lee, Geum-Suk;Ahn, Soo-Hong;Shon, Su-Deok;Lee, Seung-Jae
    • Journal of the Korean Association for Spatial Structures
    • /
    • v.16 no.1
    • /
    • pp.85-94
    • /
    • 2016
  • In this study, an acceleration sensor that has optical fibers to measure the inclination and acceleration of a structure through contradictory changes in two-component FBG sensors was examined. The proposed method was to ensure precise measurement through the unification of the deformation rate sensor and the angular displacement sensor. A high sensitivity three-axis accelerometer was designed and prepared using this method. To verify the accuracy of the accelerometer, the change in wavelength according to temperature and tension was tested. Then, the change in wavelength of the prepared accelerometer according to the sensor angle, and that of the sensor according to the change in ambient temperature were measured. According to the test results on the FBG-based vibration sensor that was developed using a high-speed vibrator, the range in measurement was 0.7 g or more, wavelength sensitivity, 2150 pm/g or more, and the change in wavelength change, $9.5pm/^{\circ}C$.

Development of MEMS Accelerometer-based Smart Sensor for Machine Condition Monitoring (MEMS 가속도계 기반 기계 상태감시용 스마트센서 개발)

  • Son, Jong-Duk;Yang, Bo-Suk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • /
    • pp.448-452
    • /
    • 2007
  • Many industrial operations require continuous or nearly-continuous operation of machines, which if interrupted can result in significant financial loss. The condition monitoring of these machines has received considerable attention recent years. Rapid developments in semiconductor, computing, and communication with a remote site have led to a new generation of sensor called "smart" sensors which are capable of wireless communication with a remote site. The purpose of this research is the development of smart sensor using which can on-line perform condition monitoring. This system is addressed to detect conditions that may lead to equipment failure when it is running. Moreover it will reduce condition monitoring expense using low cost MEMS accelerometer. This sensor can receive data in real-time or periodic time from MEMS accelerometer. Furthermore, this system is capable for signal preprocessing task (High Pass Filter, Low Pass Filter and Gain Amplifier) and analog to digital converter (A/D) which is controlled by CPU. A/D converter that converts 10bit digital data is used. This sensor communicates with a remote site PC using TCP/IP protocols. Wireless LAN contain IEEE 802.11i-PSK or WPA (PSK, TKIP) encryption. Developed sensor executes performance tests for data acquisition accuracy estimations.

  • PDF

Ambient Vibration-Measurement of Real Building Structure by Using Fiber Optic Accelerometer System

  • Kim, Dae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.6
    • /
    • pp.373-379
    • /
    • 2006
  • Vibration-based structural health monitoring is one of non-destructive evaluation (NDE) techniques for civil infrastructures. This paper presents a novel fiber optic accelerometer system to monitor civil engineering structures and a successful application of the novel sensor system for measuring ambient vibration of a real building structure. This sensor system integrates the Moire fringe phenomenon with fiber optics to achieve accurate and reliable measurements. The sensor system is immune to electromagnetic (EM) interference making it suitable for difficult applications in such environments involving strong EM fields, electrical spark-induced explosion risks, and cabling problems, prohibiting the use of conventional electromagnetic accelerometers. A prototype sensor system has been developed, together with a signal processing software. The experimental studies demonstrated the high-performance of the fiber optic sensor system. Especially, the sensor was successfully used for monitoring a real building on UCI (University of California Irvine, USA).