• Title, Summary, Keyword: 3D Visual Object Recognition

Search Result 19, Processing Time 0.034 seconds

A Study On Parameter Measurement for Artificial Intelligence Object Recognition (인공지능 객체인식에 관한 파라미터 측정 연구)

  • Choi, Byung Kwan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.3
    • /
    • pp.15-28
    • /
    • 2019
  • Artificial intelligence is evolving rapidly in the ICT field, smart convergence media system and content industry through the fourth industrial revolution, and it is evolving very rapidly through Big Data. In this paper, we propose a face recognition method based on object recognition based on object recognition through artificial intelligence. In this method, Were experimented and studied through the object recognition technique of artificial intelligence. In the conventional 3D image field, general research on object recognition has been carried out variously, and researches have been conducted on the side effects of visual fatigue and dizziness through 3D image. However, in this study, we tried to solve the problem caused by the quantitative difference between object recognition and object recognition for human factor algorithm that measure visual fatigue through cognitive function, morphological analysis and object recognition. Especially, The new method of computer interaction is presented and the results are shown through experiments.

Sensor Fusion System for Improving the Recognition Performance of 3D Object (3차원 물체의 인식 성능 향상을 위한 감각 융합 시스템)

  • Kim, Ji-Kyoung;Oh, Yeong-Jae;Chong, Kab-Sung;Wee, Jae-Woo;Lee, Chong-Ho
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.107-109
    • /
    • 2004
  • In this paper, authors propose the sensor fusion system that can recognize multiple 3D objects from 2D projection images and tactile information. The proposed system focuses on improving recognition performance of 3D object. Unlike the conventional object recognition system that uses image sensor alone, the proposed method uses tactual sensors in addition to visual sensor. Neural network is used to fuse these informations. Tactual signals are obtained from the reaction force by the pressure sensors at the fingertips when unknown objects are grasped by four-fingered robot hand. The experiment evaluates the recognition rate and the number of teaming iterations of various objects. The merits of the proposed systems are not only the high performance of the learning ability but also the reliability of the system with tactual information for recognizing various objects even though visual information has a defect. The experimental results show that the proposed system can improve recognition rate and reduce learning time. These results verify the effectiveness of the proposed sensor fusion system as recognition scheme of 3D object.

  • PDF

Using a Multi-Faced Technique SPFACS Video Object Design Analysis of The AAM Algorithm Applies Smile Detection (다면기법 SPFACS 영상객체를 이용한 AAM 알고리즘 적용 미소검출 설계 분석)

  • Choi, Byungkwan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.3
    • /
    • pp.99-112
    • /
    • 2015
  • Digital imaging technology has advanced beyond the limits of the multimedia industry IT convergence, and to develop a complex industry, particularly in the field of object recognition, face smart-phones associated with various Application technology are being actively researched. Recently, face recognition technology is evolving into an intelligent object recognition through image recognition technology, detection technology, the detection object recognition through image recognition processing techniques applied technology is applied to the IP camera through the 3D image object recognition technology Face Recognition been actively studied. In this paper, we first look at the essential human factor, technical factors and trends about the technology of the human object recognition based SPFACS(Smile Progress Facial Action Coding System)study measures the smile detection technology recognizes multi-faceted object recognition. Study Method: 1)Human cognitive skills necessary to analyze the 3D object imaging system was designed. 2)3D object recognition, face detection parameter identification and optimal measurement method using the AAM algorithm inside the proposals and 3)Face recognition objects (Face recognition Technology) to apply the result to the recognition of the person's teeth area detecting expression recognition demonstrated by the effect of extracting the feature points.

Neural Network Approach to Sensor Fusion System for Improving the Recognition Performance of 3D Objects (3차원 물체의 인식 성능 향상을 위한 감각 융합 신경망 시스템)

  • Dong Sung Soo;Lee Chong Ho;Kim Ji Kyoung
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.3
    • /
    • pp.156-165
    • /
    • 2005
  • Human being recognizes the physical world by integrating a great variety of sensory inputs, the information acquired by their own action, and their knowledge of the world using hierarchically parallel-distributed mechanism. In this paper, authors propose the sensor fusion system that can recognize multiple 3D objects from 2D projection images and tactile informations. The proposed system focuses on improving recognition performance of 3D objects. Unlike the conventional object recognition system that uses image sensor alone, the proposed method uses tactual sensors in addition to visual sensor. Neural network is used to fuse the two sensory signals. Tactual signals are obtained from the reaction force of the pressure sensors at the fingertips when unknown objects are grasped by four-fingered robot hand. The experiment evaluates the recognition rate and the number of learning iterations of various objects. The merits of the proposed systems are not only the high performance of the learning ability but also the reliability of the system with tactual information for recognizing various objects even though the visual sensory signals get defects. The experimental results show that the proposed system can improve recognition rate and reduce teeming time. These results verify the effectiveness of the proposed sensor fusion system as recognition scheme for 3D objects.

Resolution-enhanced Reconstruction of 3D Object Using Depth-reversed Elemental Images for Partially Occluded Object Recognitionz

  • Wei, Tan-Chun;Shin, Dong-Hak;Lee, Byung-Gook
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.139-145
    • /
    • 2009
  • Computational integral imaging (CII) is a new method for 3D imaging and visualization. However, it suffers from seriously poor image quality of the reconstructed image as the reconstructed image plane increases. In this paper, to overcome this problem, we propose a CII method based on a smart pixel mapping (SPM) technique for partially occluded 3D object recognition, in which the object to be recognized is located at far distance from the lenslet array. In the SPM-based CII, the use of SPM moves a far 3D object toward the near lenslet array and then improves the image quality of the reconstructed image. To show the usefulness of the proposed method, we carry out some experiments for occluded objects and present the experimental results.

Object Recognition-based Global Localization for Mobile Robots (이동로봇의 물체인식 기반 전역적 자기위치 추정)

  • Park, Soon-Yyong;Park, Mignon;Park, Sung-Kee
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.1
    • /
    • pp.33-41
    • /
    • 2008
  • Based on object recognition technology, we present a new global localization method for robot navigation. For doing this, we model any indoor environment using the following visual cues with a stereo camera; view-based image features for object recognition and those 3D positions for object pose estimation. Also, we use the depth information at the horizontal centerline in image where optical axis passes through, which is similar to the data of the 2D laser range finder. Therefore, we can build a hybrid local node for a topological map that is composed of an indoor environment metric map and an object location map. Based on such modeling, we suggest a coarse-to-fine strategy for estimating the global localization of a mobile robot. The coarse pose is obtained by means of object recognition and SVD based least-squares fitting, and then its refined pose is estimated with a particle filtering algorithm. With real experiments, we show that the proposed method can be an effective vision- based global localization algorithm.

  • PDF

Visual Servoing of a Mobile Manipulator Based on Stereo Vision

  • Lee, H.J.;Park, M.G.;Lee, M.C.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • /
    • pp.767-771
    • /
    • 2003
  • In this study, stereo vision system is applied to a mobile manipulator for effective tasks. The robot can recognize a target and compute the position of the target using a stereo vision system. While a monocular vision system needs properties such as geometric shape of a target, a stereo vision system enables the robot to find the position of a target without additional information. Many algorithms have been studied and developed for an object recognition. However, most of these approaches have a disadvantage of the complexity of computations and they are inadequate for real-time visual servoing. However, color information is useful for simple recognition in real-time visual servoing. In this paper, we refer to about object recognition using colors, stereo matching method, recovery of 3D space and the visual servoing.

  • PDF

Visual Servoing of a Mobile Manipulator Based on Stereo Vision (스테레오 영상을 이용한 이동형 머니퓰레이터의 시각제어)

  • Lee Hyun Jeong;Park Min Gyu;Lee Min Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.5
    • /
    • pp.411-417
    • /
    • 2005
  • In this study, stereo vision system is applied to a mobile manipulator for effective tasks. The robot can recognize a target and compute the potion of the target using a stereo vision system. While a monocular vision system needs properties such as geometric shape of a target, a stereo vision system enables the robot to find the position of a target without additional information. Many algorithms have been studied and developed for an object recognition. However, most of these approaches have a disadvantage of the complexity of computations and they are inadequate for real-time visual servoing. Color information is useful for simple recognition in real-time visual servoing. This paper addresses object recognition using colors, stereo matching method to reduce its calculation time, recovery of 3D space and the visual servoing.

Nonlinear 3D image correlator using computational integral imaging reconstruction method (컴퓨터 집적 영상 복원 방법을 이용한 비선형 3D 영상 상관기)

  • Shin, Dong-Hak;Hong, Seok-Min;Kim, Kyoung-Won;Lee, Byung-Gook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • /
    • pp.155-157
    • /
    • 2012
  • In this paper, we propose a nonlinear 3D image correlator using computational reconstruction of 3D images based on integral imaging. In the proposed method, the elemental images for reference 3D object and target 3D object are recorded through the lens array. The recorded elemental images are reconstructed as reference plane image and target plane images using the computational integral imaging reconstruction algorithm and the nonolinear correlation between them is performed for object recognition. To show the usefulness of the proposed method, the preliminary experiments are carried out and the experimental results are presented compared with the conventional results.

  • PDF

Dual Autostereoscopic Display Platform for Multi-user Collaboration with Natural Interaction

  • Kim, Hye-Mi;Lee, Gun-A.;Yang, Ung-Yeon;Kwak, Tae-Jin;Kim, Ki-Hong
    • ETRI Journal
    • /
    • v.34 no.3
    • /
    • pp.466-469
    • /
    • 2012
  • In this letter, we propose a dual autostereoscopic display platform employing a natural interaction method, which will be useful for sharing visual data with users. To provide 3D visualization of a model to users who collaborate with each other, a beamsplitter is used with a pair of autostereoscopic displays, providing a visual illusion of a floating 3D image. To interact with the virtual object, we track the user's hands with a depth camera. The gesture recognition technique we use operates without any initialization process, such as specific poses or gestures, and supports several commands to control virtual objects by gesture recognition. Experiment results show that our system performs well in visualizing 3D models in real-time and handling them under unconstrained conditions, such as complicated backgrounds or a user wearing short sleeves.