• Title, Summary, Keyword: 3차원 추적

Search Result 532, Processing Time 0.075 seconds

3-D Object Tracking using 3-D Information and Optical Correlator in the Stereo Vision System (스테레오 비젼 시스템에서 3차원정보와 광 상관기를 이용한 3차원 물체추적 방법)

  • 서춘원;이승현;김은수
    • Journal of Broadcast Engineering
    • /
    • v.7 no.3
    • /
    • pp.248-261
    • /
    • 2002
  • In this paper, we proposed a new 3-dimensional(3-D) object-tracking algorithm that can control a stereo camera using a variable window mask supported by which uses ,B-D information and an optical BPEJTC. Hence, three-dimensional information characteristics of a stereo vision system, distance information from the stereo camera to the tracking object. can be easily acquired through the elements of a stereo vision system. and with this information, we can extract an area of the tracking object by varying window masks. This extractive area of the tracking object is used as the next updated reference image. furthermore, by carrying out an optical BPEJTC between a reference image and a stereo input image the coordinates of the tracking objects location can be acquired, and with this value a 3-D object tracking can be accomplished through manipulation of the convergence angie and a pan/tilt of a stereo camera. From the experimental results, the proposed algorithm was found to be able to the execute 3-D object tracking by extracting the area of the target object from an input image that is independent of the background noise in the stereo input image. Moreover a possible implementation of a 3-D tele-working or an adaptive 3-D object tracker, using the proposed algorithm is suggested.

Online Multi-view Range Image Registration using Geometric and Photometric Features (3차원 기하정보 및 특징점 추적을 이용한 다시점 거리영상의 온라인 정합)

  • Baek, Jae-Won;Park, Soon-Yong
    • 한국HCI학회:학술대회논문집
    • /
    • /
    • pp.1000-1005
    • /
    • 2007
  • 본 논문에서는 실물체의 3차원 모델을 복원하기 위해 거리영상 카메라에서 획득된 3차원 점군에 대한 온라인 정합 기법을 제안한다. 제안하는 방법은 거리영상 카메라를 사용하여 연속된 거리영상과 사진영상을 획득하고 문턱값(threshold)을 이용하여 물체와 배경에 대한 정보를 분류한다. 거리영상에서 특징점을 선택하고 특징점에 해당하는 거리영상의 3차원 점군을 이용하여 투영 기반 정합을 실시한다. 초기정합이 종료되면 사진영상간의 대응점을 추적하여 거리영상을 정제하는 과정을 거치는데 대응점 추적에 사용되는 KLT(Kanade-Lucas-Tomasi) 추적기를 수정하여 초기정합의 결과를 대응점 탐색에 이용함으로써 탐색의 속도와 성공률을 증가시켰다. 특징점과 추적된 대응점에 해당하는 3차원 점군을 이용하여 거리영상의 정제를 수행하고 정합이 완료되면 오프라인에서 3차원 모델을 합성하였다. 제안한 알고리듬을 적용하여 2개의 실물체에 대하여 실험을 수행하고 3차원 모델을 생성하였다.

  • PDF

Visual Tracking Insensitive to 3D Rotation of Objects (물체의 3차원 회전에 대응 가능한 영상 추적 알고리듬)

  • Cho, Young-Joo;You, Bum-Jae;Lim, Joon-Hong;Oh, Sang-Rok
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.664-666
    • /
    • 1999
  • 영상 추적(visual tracking)은 로봇의 시각기반제어, 교통정보시스템, 무인감시시스템 등 다양한 분야에 적용 가능하기 때문에 지정된 혹은 운동이 감지된 물체를 지속적이고 빠르게 추적하는 데 목적을 둔다. 이 때 어려운 문제 중 하나는 시간이 지나면서 위치이동은 물론 회전에 와해 물체의 모양이 변한다는 것이다. 이에 본 논문에서는 물체의 3차원 회전에 대응 가능한 실시간 영상추적 알고리듬을 제안한다. 이 알고리듬은 SSD(sum-of-squared differences)를 기반으로 하되, 물체의 배경이 바뀔 때나 물체가 영상추적 윈도우보다 작은 경우에도 추적이 가능하고 3차원 회전에 대응 가능하다. 이것은 3차원 회전으로 인하여 추적목표를 잃어버리는 것을 막기 위하여 기준 영역이 회전할 때 제안된 성능지수에 따라 영상추적 영역과 기준 영상을 새롭게 설정해줌으로써 구현된다. 제안된 알고리듬은 PC기반 실시간 시각시스템에서 성공적으로 실험되었다.

  • PDF

Tolerance Analysis of 3-D Object Modeling Errors in Model-Based Camera Tracking (모델 기반 카메라 추적에서 3 차원 객체 모델링의 허용 오차 범위에 대한 분석)

  • Rhee, Eun Joo;Seo, Byung-Kuk;Park, Jong-Il
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • /
    • pp.415-416
    • /
    • 2012
  • 모델 기반 카메라 추적에서 추적을 위한 3 차원 객체 모델의 정확도는 매우 중요하다. 하지만 3 차원 객체의 실측 모델링은 일반적으로 정교한 작업을 요구할 뿐 아니라, 오차 없이 모델링 하기가 매우 어렵다. 반면에 오차를 포함하고 있는 객체 모델을 이용하더라도 실제 추적 환경에서 사용자가 느끼는 성공적인 추적의 허용 오차는 실제 추적 오차와 다를 수 있다. 따라서, 본 논문에서는 모델 기반 카메라 추적에서 모델링 오차에 따른 모델과 영상 정보 간의 실제 정합 오차와 육안으로 판단되는 정합의 허용 오차를 사용자 평가를 통해 비교 분석하고, 3 차원 객체 모델링의 허용 오차 범위에 대해 논의한다.

  • PDF

3-D Model-Based Tracking for Mobile Augmented Reality (모바일 증강현실을 위한 3차원 모델기반 카메라 추적)

  • Park, Jungsik;Seo, Byung-Kuk;Park, Jong-Il
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • /
    • pp.65-68
    • /
    • 2011
  • 본 논문에서는 모바일 증강현실을 실현하기 위한 3차원 모델기반 카메라 추적 기술을 제안한다. 3차원 모델기반 추적 기술은 평면적이지 않은 객체에 적용 가능하며, 특히 텍스처가 없는 환경에서 유용하다. 제안하는 방식은 대상 객체의 3차원 모델정보로부터 영상에서 추출한 에지와의 대응점을 찾고, 대응점의 거리를 최소화하는 카메라 움직임을 추정함으로써 이전 카메라 포즈(위치 및 방향)로부터 현재 포즈가 추적되는 방식이다. 안드로이드 플랫폼의 스마트폰 상에서 제안된 방식으로 카메라 포즈를 추적하고 3차원 가상 콘텐츠를 증강시켜 봄으로써 그 유용성을 확인한다.

  • PDF

실시간 표적 인식 및 추적 기법 연구

  • 이상욱
    • ICROS
    • /
    • v.3 no.5
    • /
    • pp.31-37
    • /
    • 1997
  • 본 연구로부터 최종적으로 얻을 수 있는 성과는 비행중 표적 포착과 인식을 위한 실시간 표적 인식 및 추적 기법에 대한 기반 기술과 차세대 호밍 유도탄 개발을 위한 기반 기술 확보라 할 수 있다. 단계별로는 제 1단계에서 2차원 인식/추적 기법과 이의 실시간 구현을 위한 기초 소프트웨어 및 하드웨어에 관한 연구결과를 기반으로 하여, 2단계에서는 가리워짐이 있는 상황에서의 2차원 인식, 3차원 모델에 기반한 인식 및 추적, 센서 퓨전, 그리고 3단계에서는 인식과 추적의 통합, 인공지능의 기초 기술에 관한 결과를 얻을 수 있다.

  • PDF

Robust 3-D Points Estimation and Tracking with Dynamic Model for Optical Motion Capture (광학식 동작 포착에서 동적 모델을 이용한 신뢰성있는 3-D 좌표 추정 및 추적)

  • Lee, Dong-Hun;Chu, Chang-U;Kim, Seong-Jin;Jeong, Sun-Gi
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.10
    • /
    • pp.825-834
    • /
    • 2000
  • 광학식 동작 포착(optical motion capture)시스템에서 신뢰할만한 3차원 좌표의 획득과 마커의 궤적 추적은 매우 중요한 문제이다. 3차원 좌표를 획득하기 이해서는 다중의 카메라로부터 2차원의 데이터 간의 대응관계를 구해야 한다. 본 논문에서는 각 카메라에서의 3차원 마커들 간의 대응관계를 k-partite graph로 모델링하고, 릴렉세이션 알고리즘을 사용하여 고스트가 제거된 신뢰성있는 클릭을 추출한다. 이를 통해 정확하고 안정적인 3차원의 좌표를 생성할 수 있다. 또한 추출된 3차원 마커의 궤적의 추적을 위해 칼만 필터를 사용한 마커의 예측과 데이터 연계 문제의 해결을 위한 전략을 제안하고. 사라진 마커의 궤적을 유지시키기 위해 다이나믹 모델을 사용한 추적 알고리즘을 제시한다.

  • PDF

Robust 3D Hand Tracking based on a Coupled Particle Filter (결합된 파티클 필터에 기반한 강인한 3차원 손 추적)

  • Ahn, Woo-Seok;Suk, Heung-Il;Lee, Seong-Whan
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.1
    • /
    • pp.80-84
    • /
    • 2010
  • Tracking hands is an essential technique for hand gesture recognition which is an efficient way in Human Computer Interaction (HCI). Recently, many researchers have focused on hands tracking using a 3D hand model and showed robust tracking results compared to using 2D hand models. In this paper, we propose a novel 3D hand tracking method based on a coupled particle filter. This provides robust and fast tracking results by estimating each part of global hand poses and local finger motions separately and then utilizing the estimated results as a prior for each other. Furthermore, in order to improve the robustness, we apply a multi-cue based method by integrating a color-based area matching method and an edge-based distance matching method. In our experiments, the proposed method showed robust tracking results for complex hand motions in a cluttered background.

3D Motion Estimation Using Optical Flow (Optical Flow를 이용한 3차원 운동 정보에 관한 연구)

  • 조혜리;이경무;이상욱
    • Proceedings of the IEEK Conference
    • /
    • /
    • pp.845-848
    • /
    • 2000
  • 운동(motion) 벡터는 보고 있는 카메라와 관측되는 대상물 사이의 상대적인 움직임에 의해서 발생되는 3차원 물체의 속도가 2차원 영상에 투사되어 맺히는 영상에서의 2차원 속도 벡터를 가리킨다 영상에서 물체의 움직임은 3차원 공간상의 운동을 알 수 있는 중요한 정보로써 물체를 추적하는데 응용되고 있다. 본 논문에서는 여러 장의 연속적인 2차원 밝기 영상으로부터 카메라의 움직임을 추정하는 문제를 다룬다. 기존의 특징 기반 추적 기법에서는 저 단계의 영상 처리 과정에서 모델과 배경의 특징점이 서로 분리되지 않거나, 모델의 특징(feature)이 소실되었을 경우, 추적이 용이하지 못하고, 카메라와 3차원 물체의 병진과 회전 운동에 의해 발생된 움직임의 경우 3차원 표적 특징이 많이 사라져서 오차가 많이 누적되기도 한다. 본 논문에서는 이러한 문제를 해결하기 위하여 목표물 및 배경 특징들을 사용하여 카메라의 운동 정보를 찾아내는 기법을 제안한다. 제안하는 3차원 카메라의 운동 정보 추정 기법은 크게 두 장의 연속된 영상으로부터 3차원 모델과 배경의 많은 특징들에 대한 광류(optical flow) 검색 과정과, 이로부터 취득한 움직임 벡터와 카메라의 비선형 운동 방정식과 Lagrange multiplier를 통한 카메라의 운동 정보 추정 과정으로 구성된다.

  • PDF

3D Object tracking with reduced jittering (떨림 현상이 완화된 3차원 객체 추적)

  • Kang, Minseok;Park, Jungsik;Park, Jong-Il
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • /
    • pp.185-188
    • /
    • 2015
  • 미리 저장된 객체의 3차원 특징점(Feature point) 좌표와 카메라 영상의 2차원 특징점 좌표를 매칭(Matching)하여 객체를 추적하는 방식의 경우, 카메라의 시점이 변할 때 특징점에서 발생되는 원근 효과(Perspective effect)가 반영되지 못하여 특징점 매칭 오류가 발생한다. 따라서 특징점에서 발생하는 원근 효과를 반영하여 정확한 카메라 포즈를 추정하기 위해 이전 프레임(Frame)의 카메라 포즈(Camera Pose)에 맞추어 텍스쳐가 포함 된 3차원 객체의 모델을 렌더링 하여 원근 효과를 적용한 후, 현재 카메라 영상과 특징점 매칭하여 프레임 사이의 카메라 움직임을 구하여 객체를 추적한다. 더 나아가 본 논문에서는 특징점 매칭에서 발생하는 작은 오류들로 인한 미세한 카메라 움직임은 2단계의 임계치(Threshold)를 적용하여 떨림 현상으로 간주하여 떨림 현상이 제거된 객체 추적을 수행한다. 매 프레임마다 카메라 포즈에 맞춘 추적 객체를 렌더링 하기 때문에 떨림 현상으로 간주되어 제거된 카메라 움직임은 누적되지 않고, 추적 오류도 발생시키지 않는다.

  • PDF