• Title, Summary, Keyword: 20(S)-ginsenoside Rh₁

Search Result 46, Processing Time 0.035 seconds

Preparation of a 20(R)-Ginsenoside $Rh_2$ and the 20(S) Epimer from Protopanaxadiol Saponins of Panax ginseng C.A. Meyer (인삼의 Protopanaxadiol계 사포닌으로부터 20(R)-Ginsenoside $Rh_2$ 및 20(S) 이성체의 제조)

  • 김신일;백남인;김동선;이유희;강규상;박종대
    • YAKHAK HOEJI
    • /
    • v.35 no.5
    • /
    • pp.432-437
    • /
    • 1991
  • A mixture of 20(R)- and 20(S)-ginsenoside Rg$_{3}$ was obtained under mild acidic hydrolysis from protopanaxadiol saponins, ginsenosides Rb$_{1}$, Rb$_{2}$, Rc and Rd. The product was acetylated to give the peracetates, which were further converted into 20(R)-ginsenoside Rg$_{3}$, 20(S)-ginsenoside Rg$_{3}$, 20(R)-ginsenoside Rh$_{2}$ and 20(S)-ginsenoside Rh$_{2}$ by the direct alkaline treatment depending upon two kinds of temperature conditions respectively. The structure and physicochemical properties of a prosapogenin, 20(R)-ginsenoside Rh$_{2}$, were investigated.

  • PDF

Production of the Rare Ginsenoside Rh2-MIX (20(S)-Rh2, 20(R)-Rh2, Rk2, and Rh3) by Enzymatic Conversion Combined with Acid Treatment and Evaluation of Its Anti-Cancer Activity

  • Song, Bong-Kyu;Kim, Kyeng Min;Choi, Kang-Duk;Im, Wan-Taek
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.7
    • /
    • pp.1233-1241
    • /
    • 2017
  • The ginsenoside Rh2 has strong anti-cancer, anti-inflammatory, and anti-diabetic effects. However, the application of ginsenoside Rh2 is restricted because of the small amounts found in Korean white and red ginsengs. To enhance the production of ginsenoside Rh2-MIX (comprising 20(S)-Rh2, 20(R)-Rh2, Rk2, and Rh3 as a 10-g unit) with high specificity, yield, and purity, a new combination of enzymatic conversion using the commercial enzyme Viscozyme L followed by acid treatment was developed. Viscozyme L treatment at pH 5.0 and $50^{\circ}C$ was used initially to transform the major ginsenosides Rb1, Rb2, Rc, and Rd into ginsenoside F2, followed by acid-heat treatment using citric acid 2% (w/v) at pH 2.0 and $121^{\circ}C$ for 15 min. Scale-up production in a 10-L jar fermenter, using 60 g of the protopanaxadiol-type ginsenoside mixture from ginseng roots, produced 24 g of ginsenoside Rh2-MIX. Using 2 g of Rh2-MIX, 131 mg of 20(S)-Rh2, 58 mg of 20(R)-Rh2, 47 mg of Rk2, and 26 mg of Rh3 were obtained at over 98% chromatographic purity. Then, the anti-cancer effect of the four purified ginsenosides was investigated on B16F10, MDA-MB-231, and HuH-7 cell lines. As a result, these four rare ginsenosides markedly inhibited the growth of the cancer cell lines. These results suggested that rare ginsenoside Rh2-MIX could be exploited to prepare an anti-cancer supplement in the functional food and pharmaceutical industries.

Regioselective Synthesis of Ginsenoside $Rh_2$ (진세노사이드 $Rh_2$의 방향선택적 합성)

  • 신명희;정지형;장은하;임광식
    • YAKHAK HOEJI
    • /
    • v.45 no.4
    • /
    • pp.328-333
    • /
    • 2001
  • Ginsenoside Rh$_2$, a minor glycoside constituent of the red ginseng is known as an unique antitumor compound. Several attempts to prepare it in a large scale including semisynthesis from betulafolientriol, an 3-epimer of 20(S)-protopanaxadiol, has been reported. We have previously reported a synthesis of ginsenoside Rh$_2$from 20(S)-protopanaxadiol obtained by alkaline hydrolysis of total ginsenoside. The regioselective synthesis of this compound was achieved by protection of 12-OH group.

  • PDF

Preparation of $Ginsenoside-Rh_2$ from Dammarane Saponins of Panax ginseng Leaves (인삼잎의 Dammarane계 사포닌으로부터 $Ginsenoside-Rh_2$의 제조)

  • Cha, Bae-Cheon;Lee, Sang-Guk
    • YAKHAK HOEJI
    • /
    • v.38 no.4
    • /
    • pp.425-429
    • /
    • 1994
  • The genuine aglycone, 20(S)-protopanaxadiol, obtained from the leaves of Panax ginseng as a result of direct alkaline treatment was isolated and characterized by spectroscopic evidences. The study on the yield of genuine aglycone which is produced from the treatment of some kinds of alkali was carried out. $Ginsenoside-Rh_2$ was synthesized by conjugation of 2,3,4,6-tetra-O-acetyl-${\alpha}$-D-glucopyranosyl bromide to 20(S)-protopanaxadiol in the presence of silver carbonate and cadmium cabonate. The preparation of $ginsenoside-Rh_2$ by this method is a new one which the yield of this saponin can be improved in the mild condition.

  • PDF

Complete Assignment of $^1H-$ and $^{13}C-NMR$ Signals for (20S)- and (20R)-ginsenoside $Rh_2$ by 2D-NMR Techniques (2D-NMR 기법을 이용한 (20S)-와 (20R)-ginsenoside $Rh_2$$^1H-$$^{13}C-NMR$ Signals의 완전 동정)

  • Kim, Dong-Seon;Lee, You-Hui;Park, Jong-Dae;Jeong, So-Young;Lee, Chun-Bae;Kim, Shin-Il;Baek, Nam-In
    • Applied Biological Chemistry
    • /
    • v.38 no.2
    • /
    • pp.184-189
    • /
    • 1995
  • (20S)- and (20R)-Ginsenoside $Rh_2$ were prepared from crude ginseng saponin by chemical treatments. The $^1H-$ and $^{13}C-NMR$ signals of these compounds were fully assigned by various NMR techniques such as DEPT, $^1H-^1H$ COSY, HMQC, HMBC and NOESY.

  • PDF

CHEMICAL STUDIES ON CRUDE DRUG PROCESSING RED GINSENG AND WHITE GINSENG (생약에 관한 화학구조-홍삼 및 백삼-)

  • Kitagawa Isao
    • Proceedings of the Ginseng society Conference
    • /
    • /
    • pp.159-168
    • /
    • 1984
  • 생약의 화학적 특성에 대한 계속적인 연구가 이루어짐에 따라 우리는 홍삼 및 백삼의 화학성분을 상대적으로 규명하였다. 홍삼은 극성이 약한 분획에서 5개의 새로운 배당체(20R-ginsenoside $Rg_{2},\;Rh_{1};20R$, 20S-ginsenoside $Rg_{3}; ginsenoside\;Rh_{2}$와 새로운 아세칠렌 화합물(Panaxytriol)을 함유하는 특징적인 성분들이 gins - enoside Rh1, Rg2와 함께 분리되었다. ginsenoside Rh2는 배양된 종양세포에 대해 세포독소 효과를 보여주었다. 백삼은 수용성 분획에서 특징적인 성분이 있는 것으로 밝혀졌으며, 여기에서 malonly-ginsenosides Rb1, Rb2, Rc 및 Rd로 명명된 새로운 배당체 성분이 분리되었다. Malona-ginsenosides는 백삼에서는 주요한 배당체이지만, 홍삼에서는 검출되지 않았다.

  • PDF

Biotransformation of Ginseng Extract to Cytotoxic Compound K and Ginsenoside $Rh_2$ by Human Intestinal Bacteria

  • Bae, Eun-Ah;Choo, Min-Kyung;Lee, Young-Churl;Kim, Dong-Hyun
    • Natural Product Sciences
    • /
    • v.10 no.6
    • /
    • pp.347-352
    • /
    • 2004
  • When saponin extracts of dried ginseng and red ginseng were anaerobically incubated with human intestinal microflora, these extracts were metabolized to compound K and ginsenoside $Rh_2$, respectively. However, when these extracts were incubated with commercial lactic acid bacteria, these did not metabolize these ginsenosides to compound K or ginsenoside $Rh_2$. Among some intestinal bacteria isolated from human feces, Bacteroides C-35 and C-36 transformed these saponin extracts to compound K and ginsenoside $Rh_2$, respectively. These bacteria also transformed water extracts of dried ginseng and red ginseng to compound K and ginsenoside $Rh_2$, respectively, similarly with that of the saponin extracts. Among transformed ginsenosides, compound K and 20(S)-ginsenoside $Rh_2$ exhibited the most potent cyotoxicity against tumor cells.

Antiviral activity of 20(R)-ginsenoside Rh2 against murine gammaherpesvirus

  • Kang, Soowon;Im, Kyungtaek;Kim, Geon;Min, Hyeyoung
    • Journal of Ginseng Research
    • /
    • v.41 no.4
    • /
    • pp.496-502
    • /
    • 2017
  • Background: Ginsenosides are the major components of Panax ginseng Meyer, an herbal medicine used for the treatment of various diseases. Different ginsenosides contribute to the biological properties of ginseng, such as antimicrobial, anticancer, and immunomodulatory properties. In this study, we investigated the antiviral effects of 15 ginsenosides and compound K on gammaherpesvirus. Methods: The antiviral activity of ginsenosides was examined using the plaque-forming assay and by analyzing the expression of the lytic gene. Results: 20(R)-Ginsenoside Rh2 inhibited the replication and proliferation of murine gammaherpesvirus 68 (MHV-68), and its half-maximal inhibitory concentration ($IC_{50} $) against MHV-68 was estimated to be $2.77{\mu}M$. In addition, 20(R)-ginsenoside Rh2 inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced lytic replication of human gammaherpesvirus in the Kaposi's sarcoma-associated herpesvirus (KSHV)-positive cell line BC3. Conclusion: Our results indicate that 20(R)-ginsenoside Rh2 can inhibit the replication of mouse and human gammaherpesviruses, and thus, has the potential to treat gammaherpesvirus infection.