• Title, Summary, Keyword: 횡방향 구속효과

Search Result 53, Processing Time 0.032 seconds

Nonlinear Analysis considered Confinement Effect of Precast Concrete Segment (프리캐스트 콘크리트 세그먼트의 구속효과를 고려한 비선형 해석)

  • Lee, Heon-Min;Kim, Tae-Hoon;Park, Jae-Keun;Kim, Young-Jin;Shin, Hyun-Mock
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • /
    • pp.305-308
    • /
    • 2008
  • The purpose of this study is to propose the confinement effectiveness of precast segmental concrete that binding by lateral confining steel in the method of precast segmental concrete pridge piers construction. Generally, the confinement effect of concrete that binding by lateral confining steel is defined by the confinement effectiveness coefficient and the confinement effectiveness coefficient is defined as the ratio of area of effectively confined concrete core to area of confined concrete core. The area of effectively confined concrete core is defined by Arching action occurred on a space of lateral confinement steel and The area of confined concrete core is defined by the ratio of area of longitudinal reinforcement to area of core of section. But in case of precast segmental concrete, concrete cover that exist on top and bottom of concrete segment should be considered.

  • PDF

Effect of High Temperature on Mechanical Properties of Confined Concrete with Lateral Reinforcement (고온을 받은 횡방향 철근 구속 콘크리트의 역학적 특성 연구)

  • Choi, Kwang Ho;Lee, Joong Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.1
    • /
    • pp.131-139
    • /
    • 2012
  • The lateral reinforcements of concrete such as hoops and spiral bars are known to confine concrete to compensate the strength loss due to fire by reducing explosive spalling and improving the capacity of ductility. In this context, a study was conducted to investigate the residual mechanical properties of confined and unconfined concrete($f_{ck}$=60MPa) after a single thermal cycle at 300, 600, $800^{\circ}C$. The main parameters required to establish the stress-strain relationship are the peak stress, the elastic modulus, and the strain at peak stress. The knowledge of the residual mechanical properties of concrete is necessary whenever the thermally damaged structure is required to bear a significant share of the loads, even after a severe thermal accident. Based on the results obtained in this study, the residual stress of confined concrete under thermal damage is higher according to the level of confinement and the larger strain made it to have better ductility. The decreasing ratio of elastic modulus from the relationship of stress and strain was also smaller than that of unconfined concrete.

A Nonlinear Material Model for Concrete Compression Strength Considering Confining Effect (30-40Mpa의 압축강도를 갖는 콘크리트의 구속효과를 고려한 비선형 재료모델의 적용성 검토)

  • Lee, Heon-Min;Park, Jae-Guen;Hwang, Jae-Min;Yun, Hee-Tack;Shin, Hyun-Mock
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • /
    • pp.379-382
    • /
    • 2009
  • 횡방향으로 구속된 콘크리트의 응력-변형률 거동은 구속되지 않은 콘크리트와는 다른 거동을 한다. 보통강도 콘크리트에서 구속효과를 고려한 콘크리트 재료모델로는 Mander 모델이 대표적이며 고강도 콘크리트의 구속효과의 경우 여러 연구자들에 의하여 제안된 모델 중 공시체 수준의 실험결과와 잘 일치하는 Sakino-Sun 모델을 사용하였다. 보통강도에서는 Mander모델을 고강도 콘크리트에서는 Sakino-Sun 모델을 사용하였으나 중간 강도인 30-40MPa의 강도에서 Mander 모델과 Sakino-Sun 모델의 적용시 실험결과와 해석결과가 다소 차이를 보이며 또한 두 모델은 적용할 수 있는 최대 또는 최소 콘크리트 압축강도의 한계범위가 명확하지 않다. 따라서 이 연구에서는 30-40MPa의 강도의 횡방향으로 구속된 콘크리트의 비선형 재료모델을 제안하고 실제 30-40MPa의 압축강도를 갖는 콘크리트 공시체의 일축압축시험 결과와의 비교를 통해 그 적용성을 검토하였다.

  • PDF

Inelastic Analysis of Reinforced Concrete Structure Subjected to Cyclic Loads with Confining Effects of Lateral Tie (횡방향 철근의 구속효과를 고려한 반복하중을 받는 철근콘크리트 부재의 비탄성해석)

  • 유영화;최정호;신현목
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.79-93
    • /
    • 1998
  • The eigenvalue problem is presented for the building with added viscoelastic dampers by using component mode method. The Lagrange multiplier formulation is used to derive the eigenvalue problem which is expressed with the natural frequencies of the building, the mode components at which the dampers are added, and the viscoelastic property of the damper. The derived eigenvalue problem has a nonstandard form for determining the eigenvalues. Therefore, the problem is examined by the graphical depiction to give new insight into the eigenvalues for the building with added viscoelastic dampers. Using the present approach the exact eigenvalues can be found and also upper and lower bounds of the eigenvalues can be obtained.

  • PDF

Confinement Effects of High Strength Reinforced Concrete Tied Columns (고강도 철근콘크리트 띠철근 기둥의 구속효과)

  • 신성우;한범석
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.578-588
    • /
    • 2002
  • An experimental study was conducted to investigate the effectiveness of transverse reinforcement in reinforced concrete tied columns subjected to monotonically increasing axial compression. Eighteen large-scale columns(260$\times$260$\times$1200 mm) were tested. Effects of main variables such as the concrete compressive strength, the tie configuration, the transverse reinforcement ratio, the tie spacing, and the spatting of the concrete cover were considered. High-strength concrete columns under concentric axial loads show extremely brittle behavior unless the columns are confined with transverse reinforcement that can provide sufficiently high lateral confinement pressure There is a consistent decrease in deformability of column specimen with increasing concrete strength. Test results were compared with the previous confinement model such as modified Kent-Park, Sheikh-Uzumeri, Mander, and Saatcioglu-Razvi model. The comparison indicates that many previous models for confined concrete overestimate or underestimate the ductility of confined concrete.

Strength Characteristics of Square Concrete Column Confined by Carbon Composite Tube (탄소섬유튜브로 횡구속된 각형 콘크리트 기둥의 압축강도 성능에 관한 연구)

  • 홍원기;김희철;윤석한;박순섭
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • The carbon composite tube can play an important role in replacing or complementing longitudinal and transverse reinforcing steels by providing ductility and strength for conventional columns. In this study, both the experimental and analytical investigations of axial behavior of large-scale square concrete columns confined by carbon composite tube are presented. The specimens are filament-wound carbon composite with 90$^{\circ}$+30$^{\circ}$, 90$^{\circ}$+45$^{\circ}$ winding angle respect to longitudinal axis of tube. The instrumented large-scale concrete-filled composite tubes(CFCT) are subjected to monotonic axial loads exerted by 10,000kN UTM. The influence of winding angle, thickness of tube on stress-strain relationships of the confined columns is identified and discussed. Proposed equations to predict both the strength and ductility of confined columns by carbon composite tube demonstrate good correlation with test data obtained from large-scale specimens.

Transverse Reinforcement for Circular Internally Confined Hollow RC column (원형 내부 구속 중공 RC 기둥의 심부 구속 횡방향 철근 연구)

  • Won, Deok Hee;Han, Taek Hee;Park, Woo Sun;Park, Jong Sub;Kang, Young Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.927-935
    • /
    • 2013
  • Recently, bridge structures has progressed the researches about seismic performance by occurrence of earthquake increased compared with the past. In the substructure of bridge, confining transverse reinforcement has arranged in plastic hinge region to resist the lateral load which increased the lateral confining effect. Columns are increased the seismic performance through secure of the stiffness and ductility The design specification for arrangement of confining transverse reinforcement same specification of domestic and international that suggested to solid reinforced concrete column(RC). This design specification have limits for Internally Confined Hollow RC(ICH RC) column because of different the component and performance characteristics of column. In this paper suggested the modified equation for economics and rational design through investigation of displacement ductility when applied the existing specification at the steel composite hollow RC column.

A Nonlinear Material Model for Concrete Compression Strength considering confining effect (콘크리트 압축강도에 따른 횡철근 구속효과를 고려한 비선형 재료모델)

  • Park, Jae-Guen;Lee, Heon-Min;Sung, Dae-Jung;Choi, Jung-Ho;Shin, Hyun-Mock
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • /
    • pp.261-264
    • /
    • 2008
  • When the concrete is confined to width direction, stress-strain curve of concrete are different from the uniaxial behavior. In case of normal strength concrete, Mander model are used with concrete material model which considers confining effect. Sakino-Sun model showed experimental result of specimen-level and the highest accuracy. Therefore, Normal strength concrete used Mander model. and High strength concrete used Sakino-Sun model. But there are significant differences from actual data when medium strength concrete used Mander or Sakino-Sun model. and Limit scope of maximum or minimum compressive strength of concrete is not clear when applied to two models. Therefore, In this research, material nonlinear model of confined concrete is suggested when concrete which has 30-40MPa's strength is confined to width direction.

  • PDF

Design Equation Suggestion through Parametric Study of Laterally Restrained Concrete Decks with Steel Strap (Steel Strap으로 횡보강된 콘크리트 바닥판의 매개변수해석을 통한 설계식 제안)

  • Kim, Cheol-Hwan;Yi, Seong-Tae;Jo, Byung-Wan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.49-57
    • /
    • 2014
  • A deterioration of typical reinforced concrete (RC) bridge deck is due to the use of calcium chloride, cracks and water penetration inside of the deck slab with steel reinforcement. In order to eliminate the defects of RC decks in terms of material, therefore, the steel-strapped deck system is studied and developed by maximizing the arching effect while the girders are restrained using straps in lateral direction to the bridge. This parametric study was performed to analyze the structural characteristics of steel-strapped deck, and to identify the factors of the thickness, span length and lateral restraint stiffness of deck slab considering the concrete non-linearity. Finally, a design equation, which is adequate to South Korea, is suggested.

Behavior of concrete cylinders confined by jacketing with lateral confining stress (횡방향 구속응력에 의한 자켓팅-콘크리트 공시편 거동)

  • Cho, Sung-Chul;Choi, Eun-Soo;Chung, Young-Soo;Cho, Baik-Soon;Choi, Ji-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • /
    • pp.157-160
    • /
    • 2008
  • The confined concrete subjected multi-axil stresses have been known as the strength of concrete increases significantly. Many researchers have studied in confining effect of concrete, and now are studying in many fields. Lap splices were located in the plastic hinge region of most bridge piers that were constructed before the adoption of the seismic design provision of Korea Highway Design Specification on 1992. But sudden brittle failure of lap splices may occur under loading. This study introduces a new method to retrofit RC bridge columns with lap splice which do not have enough ductility during an earthquake. The new method use mechanical external pressure and steel plates around RC columns. The jacketing built following the new method shows good results of increasing the compressive strength and ductility of concrete cylinders. The thicker steel jacket shows larger compressive strength, however, the ductility at failure depends on the welding quality of steel jackets. In this study, The effect of the new method is verified through comparing the results of the compressive tests and analysis results.

  • PDF