• Title, Summary, Keyword: 회귀분석

Search Result 10,117, Processing Time 0.084 seconds

Improving Polynomial Regression Using Principal Components Regression With the Example of the Numerical Inversion of Probability Generating Function (주성분회귀분석을 활용한 다항회귀분석 성능개선: PGF 수치역변환 사례를 중심으로)

  • Yang, Won Seok;Park, Hyun-Min
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.1
    • /
    • pp.475-481
    • /
    • 2015
  • We use polynomial regression instead of linear regression if there is a nonlinear relation between a dependent variable and independent variables in a regression analysis. The performance of polynomial regression, however, may deteriorate because of the correlation caused by the power terms of independent variables. We present a polynomial regression model for the numerical inversion of PGF and show that polynomial regression results in the deterioration of the estimation of the coefficients. We apply principal components regression to the polynomial regression model and show that principal components regression dramatically improves the performance of the parameter estimation.

Analysis of Landslide Hazard Area using Logistic Regression/AHP - Anseong-si - (로지스틱 회귀분석 및 AHP 기법을 이용한 산사태 위험지역 분석 - 안성시를 대상으로 -)

  • Lee, Yong-Jun;Park, Geun-Ae;Kim, Seong-Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • /
    • pp.2001-2005
    • /
    • 2006
  • 우리나라는 매년 집중호우로 인한 산사태로 인해 인적, 물질적 피해를 일으킨다. 반복적인 산사태의 피해를 방지 하기위해서는 산사태 예측 시스템이 필요하다. 본 연구에서는 안성시를 대상으로 GIS와 RS 자료를 활용하여 산사태 위험지를 분석하고자 Logistic 회귀분석 방법과 AHP 기법을 이용하였다. Logistic 회귀분석과 AHP 기법에는 6개의 인자(경사, 경사향, 고도, 토양배수, 토심, 토지이용)를 사용하여, 7등급으로 산사태 위험도를 분류하였다. Logistic 회귀분석 방법과 AHP 기법을 이용한 산사태 위험지도를 표본 자료와 비교하면 산사태가 발생한 표본에서 산사태 위험성이 높은(1-2등급)지역이 Logistic 회귀분석에서는 46.1% AHP 기법은 48.7%로 분류되어 AHP 기법이 분류도가 높다고 분석 되었다. 하지만 Logistic 회귀분석과 AHP 기법은 서로 분석 과정의 차이를 가지고 있기 때문에 Logistic 회귀분석과 AHP기법을 적용한 결과에 동일 가중치를 부여한 후 7개 등급으로 재분류(reclass)하여 산사태 위험지역을 추출 할 수 있는 방법론을 제시하였다. 그 결과 산사태가 발생한 표본에서 1-2등급지역이 58.9%로 분석되어 분류정확도를 높일 수 있었다.

  • PDF

Check for regression coefficient using jackknife and bootstrap methods in clinical data (잭나이프 및 붓스트랩 방법을 이용한 임상자료의 회귀계수 타당성 확인)

  • Sohn, Ki-Cheul;Shin, Im-Hee
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.4
    • /
    • pp.643-648
    • /
    • 2012
  • There are lots of analysis to determine the relation between dependent variable and explanatory variables. Often the regression analysis is used to do this, and we can analyze the how much the explanatory variable can be related with dependent variable and how much the regression model can explain the data. But the validation check of regression model is usually determined by coefficient of determination. We should check the validation of regression coefficient with different methods. This paper introduces the method for validation check the regression coefficient using the jackknife regression and bootstrap regression in clinical data.

A Suggestion of Two-Way Variable Algorism for Least-Squares Regression Analysis (상호변수 최소자승 회귀분석 방법의 제안)

  • Lee, Chang-Hae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • /
    • pp.189-193
    • /
    • 2005
  • 기존의 회귀식을 사용하거나 새로 유도하여 사용하는 경우 모두 일반적으로 회귀분석의 특성을 간과하고 사용하는 경우가 종종 발생한다. 일반적으로 자료들에서 구해진 회귀식은 분명히 독립변수와 종속변수가 구분되어 유도되었음에도 불구하고 이 식을 사용함에 있어서는 간혹 그 구분을 무시하고 역으로 적용하는 경향이 있었다. 그러나, 독립$\cdot$종속변수가 서로 바뀌면, 연직거리의 잔차들로부터 유도되는 기존의 회귀분석에 의하여, 회귀식이 서로 달라지기 때문에 역으로 적용하여서는 안된다. 이를 해결하기 본 연구에서는 상호변수 최소자승 회귀분석법을 제안하였다. 이론적 내용을 검토를 위해 임진강 영평천의 영중수위표 지점의 2001-2003년의 유량측정자료와 수위-유량곡선을 비교 분석하였다. 결론적으로 상호변수 회귀분석을 사용하면, 기존의 잘못 사용해온 관행을 해소할 수 있을 것이다.

  • PDF

A study on the properties of sensitivity analysis in principal component regression and latent root regression (주성분회귀와 고유값회귀에 대한 감도분석의 성질에 대한 연구)

  • Shin, Jae-Kyoung;Chang, Duk-Joon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.2
    • /
    • pp.321-328
    • /
    • 2009
  • In regression analysis, the ordinary least squares estimates of regression coefficients become poor, when the correlations among predictor variables are high. This phenomenon, which is called multicollinearity, causes serious problems in actual data analysis. To overcome this multicollinearity, many methods have been proposed. Ridge regression, shrinkage estimators and methods based on principal component analysis (PCA) such as principal component regression (PCR) and latent root regression (LRR). In the last decade, many statisticians discussed sensitivity analysis (SA) in ordinary multiple regression and same topic in PCR, LRR and logistic principal component regression (LPCR). In those methods PCA plays important role. Many statisticians discussed SA in PCA and related multivariate methods. We introduce the method of PCR and LRR. We also introduce the methods of SA in PCR and LRR, and discuss the properties of SA in PCR and LRR.

  • PDF

Analysis of Landslide Hazard Area using Logistic Regression Analysis and AHP (Analytical Hierarchy Process) Approach (로지스틱 회귀분석 및 AHP 기법을 이용한 산사태 위험지역 분석)

  • Lee, Yong-jun;Park, Geun-Ae;Kim, Seong-Joon
    • Journal of The Korean Society of Civil Engineers
    • /
    • v.26 no.5D
    • /
    • pp.861-867
    • /
    • 2006
  • The objective of this study is to analyze the landslide hazard areas by combining LRA (Lgistic Regression Analysis) and AHP (Analytic Hierarchy Program) methods with Remote Sensing and GIS data in Anseong-si. In order to classify landslide hazard areas of seven levels, six topographic factors (slope, aspect, elevation, soil drain, soil depth, and land use) were used as input factors of LRA and AHP methods. As results, high-risk areas for landslide (1 and 2 levels) by LRA and AHP of its own were classified as 46.1% and 48.7%, respectively. A new method by applying weighting factors to the results of LRA and AHP was suggested. High-risk areas for landslide (1 and 2 levels) form the new method was classified as 58.9%.

  • PDF

Comparison of Linear and Nonlinear Regressions and Elements Analysis for Wind Speed Prediction (풍속 예측을 위한 선형회귀분석과 비선형회귀분석 기법의 비교 및 인자분석)

  • Kim, Dongyeon;Seo, Kisung
    • Journal of Korean Institute of Intelligent Systems
    • /
    • v.25 no.5
    • /
    • pp.477-482
    • /
    • 2015
  • Linear regressions and evolutionary nonlinear regression based compensation techniques for the short-range prediction of wind speed are investigated. Development of an efficient MOS(Model Output Statistics) is necessary to correct systematic errors of the model, but a linear regression based MOS is hard to manage an irregular nature of weather prediction. In order to solve the problem, a nonlinear and symbolic regression method using GP(Genetic Programming) is suggested for a development of MOS for wind speed prediction. The proposed method is compared to various linear regression methods for prediction of wind speed. Also, statistical analysis of distribution for UM elements for each method is executed. experiments are performed for KLAPS(Korea Local Analysis and Prediction System) re-analysis data from 2007 to 2013 year for Jeju Island and Busan area in South Korea.

Regional Low Flow Frequency Analysis Using Bayesian Multiple Regression (Bayesian 다중회귀분석을 이용한 저수량(Low flow) 지역빈도분석)

  • Kim, Sang-Ug;Lee, Kil-Seong;Sung, Jin-Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • /
    • pp.169-173
    • /
    • 2008
  • 본 연구는 저수량 지역 빈도분석(regional low flow frequency analysis)을 수행하기 위하여 일반최소자승법(ordinary least squares method)을 이용한 Bayesian 다중회귀분석을 적용하였으며, 불확실성측면에서의 효과를 탐색하기 위하여 Bayesian 다중회귀분석에 의한 추정치와 t 분포를 이용하여 산정한 일반 다중회귀분석의 추정치의 신뢰구간을 비교분석하였다. 각 재현기간별 비교결과를 보면 t 분포를 이용하여 산정된 평균 추정치와 Bayesian 다중회귀분석에 의한 평균 추정치는 크게 다르지 않았다. 그러나 불확실성 측면에서 평가해볼 때 신뢰구간의 상한추정치와 하한추정치의 차이는 Bayesian 다중회귀분석을 사용한 경우가 기존 방법을 사용한 경우보다 훨씬 작은 것으로 나타났으며, 이로부터 저수량(low flow) 지역 빈도분석을 수행하는 경우 Bayesian 다중회귀분석이 일반 회귀분석보다 불확실성을 표현하는데 있어서 우수하다는 결과를 얻을 수 있었다. 또한 낙동강 유역에 2개의 미계측 유역을 선정하고 구축된 Bayesian 다중회귀모형을 적용하여 불확실성을 포함한 미계측 유역에서의 저수량(low flow)을 추정하였으며 이와 같은 방법이 미계측 유역에서의 저수(low flow) 특성을 나타내는 데 있어서 효과적일 수 있음을 입증하였다.

  • PDF

Fine-Grain Weighted Logistic Regression Model (가중치 세분화 기반의 로지스틱 회귀분석 모델)

  • Lee, Chang-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.9
    • /
    • pp.77-81
    • /
    • 2016
  • Logistic regression (LR) has been widely used for predicting the relationships among variables in various fields. We propose a new logistic regression model with a fine-grained weighting method, called value weighted logistic regression, by assigning different weights to each feature value. A gradient approach is utilized to obtain the optimal weights of feature values. We conduct experiments on several data sets and the experimental results show that the proposed method shows meaningful improvement in prediction accuracy.

Value Weighted Regularized Logistic Regression Model (속성값 기반의 정규화된 로지스틱 회귀분석 모델)

  • Lee, Chang-Hwan;Jung, Mina
    • Journal of KIISE
    • /
    • v.43 no.11
    • /
    • pp.1270-1274
    • /
    • 2016
  • Logistic regression is widely used for predicting and estimating the relationship among variables. We propose a new logistic regression model, the value weighted logistic regression, which comprises of a fine-grained weighting method, and assigns adapted weights to each feature value. This gradient approach obtains the optimal weights of feature values. Experiments were conducted on several data sets from the UCI machine learning repository, and the results revealed that the proposed method achieves meaningful improvement in the prediction accuracy.