• Title, Summary, Keyword: 핵심자질

Search Result 67, Processing Time 0.029 seconds

An Experimental Study on Feature Selection Using Wikipedia for Text Categorization (위키피디아를 이용한 분류자질 선정에 관한 연구)

  • Kim, Yong-Hwan;Chung, Young-Mee
    • Journal of the Korean Society for information Management
    • /
    • v.29 no.2
    • /
    • pp.155-171
    • /
    • 2012
  • In text categorization, core terms of an input document are hardly selected as classification features if they do not occur in a training document set. Besides, synonymous terms with the same concept are usually treated as different features. This study aims to improve text categorization performance by integrating synonyms into a single feature and by replacing input terms not in the training document set with the most similar term occurring in training documents using Wikipedia. For the selection of classification features, experiments were performed in various settings composed of three different conditions: the use of category information of non-training terms, the part of Wikipedia used for measuring term-term similarity, and the type of similarity measures. The categorization performance of a kNN classifier was improved by 0.35~1.85% in $F_1$ value in all the experimental settings when non-learning terms were replaced by the learning term with the highest similarity above the threshold value. Although the improvement ratio is not as high as expected, several semantic as well as structural devices of Wikipedia could be used for selecting more effective classification features.

Recognition of Korean Implicit Citation Sentences Using Machine Learning with Lexical Features (어휘 자질 기반 기계 학습을 사용한 한국어 암묵 인용문 인식)

  • Kang, In-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5565-5570
    • /
    • 2015
  • Implicit citation sentence recognition is to locate citation sentences which lacks explicit citation markers, from articles' full-text. State-of-the-art approaches exploit word ngrams, clue words, researcher's surnames, mentions of previous methods, and distance relative to nearest explicit citation sentences, etc., reaching over 50% performance. However, most previous works have been conducted on English. As for Korean, a rule-based method using positive/negative clue patterns was reported to attain the performance of 42%, requiring further improvement. This study attempted to learn to recognize implicit citation sentences from Korean literatures' full-text using Korean lexical features. Different lexical feature units such as Eojeol, morpheme, and Eumjeol were evaluated to determine proper lexical features for Korean implicit citation sentence recognition. In addition, lexical features were combined with the position features representing backward/forward proximities to explicit citation sentences, improving the performance up to over 50%.

Stack-Pointer Network for Korean Dependency Parsing (Stack-Pointer Network를 이용한 한국어 의존 구문 분석)

  • Cha, Da-Eun;Lee, Dong-Yub;Lim, Heui-Seok
    • Annual Conference on Human and Language Technology
    • /
    • /
    • pp.685-688
    • /
    • 2018
  • 의존 구문 분석은 자연어 문장에 포함된 단어들 간의 의존 관계를 분석하는 과제로 다양한 자연어 이해 과제에 요구되는 핵심 기술 중 하나이다. 본 연구에서는 단어와 문자 자질을 적용한 기존 Stack-Pointer Network의 인코더의 입력 단어 표상을 확장하여, 한국어를 비롯한 형태적으로 복잡한 언어(morphologically rich language)에 적합하도록 음절-태그 단위, 형태소 단위, 형태소 품사 정보 자질을 보강한 의존 구문 분석 모델을 제안한다. 실험 결과 제안하는 모델은 의존 구조로 변환된 세종 구문 분석 말뭉치에서 UAS 90.58%, LAS 88.35%의 성능을, 2018 국어 정보 처리 시스템 경진 대회 평가 데이터에서 UAS 84.69%, LAS 82.02%의 성능을 보였다. 더불어 제안하는 모델은 포함된 문장의 전체 길이가 긴 의존 관계, 의존소와 지배소의 거리가 먼 의존 관계, 의존소를 구성하는 형태소의 개수가 많은 의존 관계에서 기존 Stack-Pointer Network보다 향상된 성능을 보였다.

  • PDF

Learning-based Automatic Keyphrase Indexing from Korean Scientific LIS Articles (자동색인을 위한 학습기반 주요 단어(핵심어) 추출에 관한 연구)

  • Kim, Hea-Jin;Jeoung, Yoo-Kyung
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • /
    • pp.15-18
    • /
    • 2017
  • 학술 데이터베이스를 통해 방대한 양의 텍스트 데이터에 대한 접근이 가능해지면서, 많은 데이터로부터 중요한 정보를 자동으로 추출하는 것에 대한 필요성 또한 증가하였다. 특히, 텍스트 데이터로부터 중요한 단어나 단어구를 선별하여 자동으로 추출하는 기법은 자료의 효과적인 관리와 정보검색 등 다양한 응용분야에 적용될 수 있는 핵심적인 기술임에도, 한글 텍스트를 대상으로 한 연구는 많이 이루어지지 않고 있다. 기존의 한글 텍스트를 대상으로 한 핵심어 또는 핵심어구 추출 연구들은 단어의 빈도나 동시출현 빈도, 이를 변형한 단어 가중치 등에 근거하여 핵심어(구)를 식별하는 수준에 그쳐있다. 이에 본 연구는 한글 학술논문의 초록으로부터 추출한 다양한 자질 요소들을 학습하여 핵심어(구)를 추출하는 모델을 제안하였고 그 성능을 평가하였다.

  • PDF

Images of Competencies of Science Teachers in Elementary and Secondary School Students (초, 중, 고등학생들의 과학 교사 자질에 대한 이미지)

  • Kim, Youngshin;Cho, Yunjung;Lim, Soo-min
    • Journal of Science Education
    • /
    • v.44 no.1
    • /
    • pp.61-73
    • /
    • 2020
  • Teachers are the most important factor contributing to determining the quality of education. Therefore, the quality of teachers should be improved to enhance the quality of education. Teacher's competencies are defined as the skills required for teaching profession, that is, the ability to perform not only in teaching activities, but also in guidance and class management. The purpose of this study is to analyze the competencies of science teachers that elementary, middle and high school students want. To this end, 332 elementary, middle and high school students were asked to describe their preferred science teacher's competencies and avoiding science teacher's competencies as an open questionnaire. The resulting concepts were analyzed by semantic network analysis (SNA). The results of this study are as follows: 1) The competencies of science teachers that students prefer varied. This suggests that most students think positively about science teachers. In addition, it is possible to show students the positive or preferred competencies of teachers in various ways. 2) The students wanted teachers to explain the theories and concepts related to scientific phenomena through experiments. They also preferred hands-on activities and experience in science class. 3) The students put emphasis on the class-related contents in the competencies of science teachers. Accordingly, the image of science teachers and science itself should be enhanced through the improvement of science teaching methods and positive attitudes toward students. It is expected that further research on the image according to specific teaching methods of science teachers will be conducted based on the findings of this study.

의사의 자질과 태도가 의료서비스 만족도에 미치는 영향

  • Jo, Seong-Nam
    • Korea journal of population studies
    • /
    • v.32 no.3
    • /
    • pp.21-41
    • /
    • 2009
  • 본 연구는 소비자의 의료서비스 만족도에 영향을 미치는 중요한 요인들을 규명해 보고 그 관계를 살펴보고자 하였다. 특히 의료소비자가 인지하는 의료서비스의 만족도에 영향을 미치는 구성요소 가운데 의사, 간호사 등 의료인력 요소와 시설, 대기시간, 행정절차 등 비의료적 구성요소를 중심으로 만족도에 영향을 미치는 관련요인을 규명해 보았다. 본 연구에서 사용된 실증적 자료는 서울에 거주하는 사람으로 조사시점인 2007년 10월을 기점으로 지난 3개월 내에 의료서비스를 이용한 경험이 있는 사람을 대상으로 설문조사에 의해 수집되었고, 최종 543사례가 분석에 활용되었다. 의료서비스에 대한 만족도와 요인들간의 관련성을 파악하기 위해 상관관계 분석과 다중회귀분석을 실시하였고 특히 의료서비스의 질과 만족도에 직접적인 영향을 미치는 의료 인력의 자질과 태도와의 연관성에 초점을 두어 분석하였다. 분석결과, 소비자의 의료서비스 만족도에 영향을 미치는 핵심적인 관련 요인으로는 의료인력 구성요소로서 통계적으로 유의미한 영향을 미치는 것으로 나타났다. 특히 "의사실력", "의사의 자상한 설명과 친절", "의사의 믿음직함", 그리고 "의사가 환자의 얘기를 귀담아 들어줌"이라는 의사의 자질과 태도가 가장 중요한 요인이라고 할 수 있다. 이와 같은 의료서비스의 질과 만족도연구는 소비자의 의료서비스 만족도 정보로 활용하므로 의료서비스 공급자와 의료기관 종사자들의 책임의식 고취와 고객중심적 의료서비스 문화 정착에 도움이 되고 소비자들에게 좀 더 나은 의료서비스를 제공할 수 있도록 의료공급자들에게 동기를 부여해 준다는 점에서도 의의가 있을 것이다.

The Role of Semantic Representation of Verbs and Inference in the Interpretation of Missing Objects in Korean Discourse (목적어 생략에 대한 동사의 의미표상 및 추론의 역할)

  • Cho, Sook-Whan
    • Annual Conference on Human and Language Technology
    • /
    • /
    • pp.457-461
    • /
    • 2001
  • 본 논문은 동사의 의미표상과 명사의 한정성의 강호관계를 중심으로 목적어의 생략현상을 검토하였다. 한국어는 영어 같은 언어와 달리 주어, 목적어 등이 자주 생략된다. 이 연구는 한국어의 목적어 생략이 단순히 인간성 (humanness), 주체성 (agency), 한정성(definiteness) 등 명사의 의미자질에 의해서만 결정되는 것이 아니라, 다음 두 가지 제약이 결정적으로 작용함을 제안하고자 한다. 첫째, 목적어 생략은 행동양상 (mold of agent act)과 원인 (cause)을 심층적으로 포함하는 소위 '핵심 타동사 (core transitive)'와 선행사의 한정성 정도에 의해 결정되는데, 구체적으로 목적어 생략은 한정성 자질을 가진 선행사가 없는 담화에서는 허용되지 않는다는 제약이다. 둘째, 타동사와 명사의 한정성과는 독립적으로, 한국어의 목적어 생략은 또한, 추론에 의거하여 보다 더 적절히 해석될 수 있는 경우를 실증적으로 보이고자 한다.

  • PDF

Study on the parts-of-speech in Korean (한국어 품사 분류에 대한 제안)

  • 서민정
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • /
    • pp.76-81
    • /
    • 2002
  • 인터넷의 발달 등으로 많은 정보들이 문서화되기도 하고 그런 정보들이 공유되고 있는 지금, 언어학이나 전산학의 요구를 함께 충족시킬 수 있는 문법 모델 개발의 필요성이 극대화되고 있다. 이 글은 한국어 품사 분류에 대해서 국어학과 전산학에서의 처리 방법과 결과를 검토하고 정리하여 우리말의 특성을 잘 설명하면서도 국어를 전산 처리하는데도 도움을 줄 수 있는 품사분류를 제안하는데 그 목적이 있다. 한국어의 특성을 고려하여 음운, 형태, 통 어, 의미 정보를 함께 처리할 수 있는 어휘부 중심의 문법인 HPSG의 모형을 도입하여 한국어 품사 분류를 정보 전달에 기반을 두어 자질 체계와 통합 연산을 핵심으로 기술하려고 한다. 문법기술은 주로 자질 구조를 속성과 값의 행렬인 AVM(attribute-value matrices)으로 제시할 것이다.

  • PDF

Feature Selection for Chinese Named Entity Recognition using SVM (SVM을 이용한 중국어 고유명사 식별에서의 자질 선택)

  • Jin, Feng;Na, Seung-Hoon;Kang, In-Su;Li, Jin-Ji;Kim, Dong-Il;Lee, Jong-Hyeok
    • Annual Conference on Human and Language Technology
    • /
    • /
    • pp.90-95
    • /
    • 2004
  • "고유명사 식별"은 사전에 등록되어 있지 않은 고유명사를 찾아내고 분류하는 과정으로 주로 인명, 지명, 조직 명을 처리 대상으로 한다. 처리할 데이터는 점점 많아지고 고유명사는 수시로 생겨나기 때문에 고유명사 식별은 정보검색, 질의응답, 기계번역시스템의 핵심 기술 중의 하나로 부각되었다. 고유명사 식별에 있어 정확률과 더불어 식별속도와 식별모듈의 크기가 시스템의 성능에 미치는 문제도 쟁점이 되고 있다. 본 논문에서는 SVM과 자질선택을 결합한 다양한 실험을 통하여 중국어 고유명사의 식별 효율을 높이는 방법을 연구하였다.

  • PDF

A Similarity-based Dialogue Modeling with Case Frame and Word Embedding (격틀과 워드 임베딩을 활용한 유사도 기반 대화 모델링)

  • Lee, Hokyung;Bae, Kyoungman;Ko, Youngjoong
    • 한국어정보학회:학술대회논문집
    • /
    • /
    • pp.220-225
    • /
    • 2016
  • 본 논문에서는 격틀과 워드 임베딩을 활용한 유사도 기반 대화 모델링을 제안한다. 기존의 유사도 기반 대화 모델링 방법은 형태소, 형태소 표지, 개체명, 토픽 자질, 핵심단어 등을 대화 말뭉치에서 추출하여 BOW(Bag Of Words) 자질로 사용하였기 때문에 입력된 사용자 발화에 포함된 단어들의 주어, 목적어와 같은 문장성분들의 위치적 역할을 반영할 수 가 없다. 또한, 의미적으로 유사하지만 다른 형태소를 가지는 문장 성분들의 경우 유사도 계산에 반영되지 않는 형태소 불일치 문제가 존재한다. 이러한 문제점을 해결하기 위해서, 위치적 정보를 반영하기 위한 문장성분 기반의 격틀과 형태소 불일치 문제를 해결하기 위한 워드 임베딩을 활용하여 개선된 유사도 기반 대화 모델링을 제안한다. 개선된 유사도 기반 대화 모델링은 MRR 성능 약 92%의 성능을 나타낸다.

  • PDF