• Title, Summary, Keyword: 핵심어 추출

Search Result 69, Processing Time 0.035 seconds

Opinion Mining of Product Reviews using Sentiment Phrase Patterns considered the Endings of Declinable Words (어미변화를 고려한 감성 구문 패턴을 이용한 상품평 의견 분류)

  • Kim, Jung-Ho;Cha, Myung-Hoon;Kim, Myung-Kyu;Chae, Soo-Hoan
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.285-290
    • /
    • 2010
  • 인터넷이 대중화됨에 따라 누구나 쉽게 자신의 의견을 온라인상에 표현할 수 있게 되었다. 그 결과 생각이나 느낌을 나타내는 의견 데이터들의 양이 급속도로 방대해졌으며, 이러한 데이터들을 이용한 여러 응용 사례들의 등장으로, 효율적인 검색 및 자동 분류 기술이 요구되고 있다. 이런 기술적 흐름에 맞추어 의견 데이터 분류에 관한 여러 연구들이 이루어져 왔다. 이러한 의견 분류에 대한 연구들을 살펴보면, 분류를 위해 자질(Feature)로서 사용한 단일어(Single word)가 아닌 2개 이상의 N-gram 단어, 어휘 구문 패턴 및 통사 구문 패턴 등을 사용한다. 특히, 패턴은 단일어나 N-gram 단어에 비해 유연하고, 언어학적으로 풍부한 정보를 표현할 수 있기 때문에 이를 주요 연구 주제로 사용되었다. 그럼에도 불구하고, 이러한 연구들은 주로 영어에 대한 연구들이었으며, 한국어에 패턴을 적용하여 주관성을 갖는 문장을 분류하거나, 극성을 분류하는 연구들은 아직 미비하다. 한국어의 특색으로 한국어는 용언의 활용이 발달되어 있어, 어미의 변화가 다양하며, 그 변화에 따라 의미가 미묘하게 변화한다. 그러나 기존 한국어에 대한 의견 분류 연구들은 단어의 핵심 의미만을 파악하기 위해 어미 부분을 제거하고 어간만을 취해서 처리하여 어미에 대한 의미변화를 고려하지 못하므로 분류 정확도가 영어권에 연구 결과에 비해 떨어진다. 그래서 본 연구는 영어에 적용된 패턴을 이용한 기존 방법들을 정리하고, 그 방법들 중에서 극성을 지닌 문장성분 패턴을 한국어에 적용하였다. 그리고 어미의 변화에 대한 패턴을 추출하여 이 변화가 의견 분류의 성능에 미치는 영향을 분석하였다.

  • PDF

An Experimental Study on Feature Selection Using Wikipedia for Text Categorization (위키피디아를 이용한 분류자질 선정에 관한 연구)

  • Kim, Yong-Hwan;Chung, Young-Mee
    • Journal of the Korean Society for information Management
    • /
    • v.29 no.2
    • /
    • pp.155-171
    • /
    • 2012
  • In text categorization, core terms of an input document are hardly selected as classification features if they do not occur in a training document set. Besides, synonymous terms with the same concept are usually treated as different features. This study aims to improve text categorization performance by integrating synonyms into a single feature and by replacing input terms not in the training document set with the most similar term occurring in training documents using Wikipedia. For the selection of classification features, experiments were performed in various settings composed of three different conditions: the use of category information of non-training terms, the part of Wikipedia used for measuring term-term similarity, and the type of similarity measures. The categorization performance of a kNN classifier was improved by 0.35~1.85% in $F_1$ value in all the experimental settings when non-learning terms were replaced by the learning term with the highest similarity above the threshold value. Although the improvement ratio is not as high as expected, several semantic as well as structural devices of Wikipedia could be used for selecting more effective classification features.

Issue summarization scheme based on real-time SNS trend analysis (실시간 SNS 트렌드 분석에 기반한 이슈 요약 기법)

  • Kim, Daeyong;Kim, Daehoon;Hwang, Eenjun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • /
    • pp.1096-1097
    • /
    • 2013
  • 최근 Twitter를 비롯한 소셜 네트워크 서비스의 급속한 확산으로 인해, 많은 수의 SNS 메시지가 실시간으로 생성되고 있다. 이러한 SNS 상의 모든 글을 읽어보는 것은 현실적으로 불가능하며, 여러 포탈 사이트에서 제공되는 실시간 검색어 순위만으로는 상세 내용을 직관적으로 파악하기 어렵다. 따라서, 이러한 SNS상의 글을 실시간으로 분석하여 최신의 트렌드를 찾고 이와 연관된 내용을 분류 및 요약할 수 있다면, 사용자에게 유용한 최신 정보를 생성하여 제공할 수 있다. 본 논문에서는 Tweet 들을 분석하여 얻은 트렌드 키워드를 기반으로 관련된 Tweet 들을 주제 별로 분류한 후, 각 주제 별로 세부 내용을 요약해서 제공하는 기법을 제안한다. 제안하는 기법은 실시간으로 생성되는 Tweet 내에서 최근 화제가 된 트렌드 및 연관 키워드를 추출해낸다. 그 후, 해당 키워드가 출현한 Tweet 내에서 핵심 키워드를 찾고, 이를 기반으로 Tweet 들을 각각의 주제별로 분류하고 각 주제를 '이슈'로 정의한다. 마지막으로, 특정한 이슈에 해당되는 Tweet들을 분석하여 각 이슈 별로 키워드 리스트 및 단문 형식으로 요약된 줄거리를 생성한다. 제안된 기법을 바탕으로 프로토타입 시스템을 구현하고, 다양한 실험을 통하여 이슈 검출 기법의 유용성 면에서 성능을 평가한다.

  • PDF

Automatic Meeting Summary System using Enhanced TextRank Algorithm (향상된 TextRank 알고리즘을 이용한 자동 회의록 생성 시스템)

  • Bae, Young-Jun;Jang, Ho-Taek;Hong, Tae-Won;Lee, Hae-Yeoun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.5
    • /
    • pp.467-474
    • /
    • 2018
  • To organize and document the contents of meetings and discussions is very important in various tasks. However, in the past, people had to manually organize the contents themselves. In this paper, we describe the development of a system that generates the meeting minutes automatically using the TextRank algorithm. The proposed system records all the utterances of the speaker in real time and calculates the similarity based on the appearance frequency of the sentences. Then, to create the meeting minutes, it extracts important words or phrases through a non-supervised learning algorithm for finding the relation between the sentences in the document data. Especially, we improved the performance by introducing the keyword weighting technique for the TextRank algorithm which reconfigured the PageRank algorithm to fit words and sentences.

A Study on the Structures and Characteristics of National Policy Knowledge (국가 정책지식의 구조와 특성에 관한 연구)

  • Lee, Ji-Sue;Chung, Young-Mee
    • Journal of Information Management
    • /
    • v.41 no.2
    • /
    • pp.1-30
    • /
    • 2010
  • This study analyzed research output in dominant research areas of 19 national research institutions. Policy knowledge produced by the institutions during the past 5 years mainly concerned 10 policies dealing with economy and society issues. Similarities between the research subjects of the institutions were displayed by MDS mapping. The study also identified issue attention cycles of the 5 chosen policies and examined the correlation between the issue attention cycles and the yields of policy knowledge. The knowledge structure of each policy was mapped using co-word analysis and Ward's clustering. It was also found that the institutions performing research on similar subjects demonstrated citation preferences for each other.

An Informetric Study on Academic Activities and Environmental Movements in Solving Global Environmental Problems (지구적 환경문제 해결을 위한 학술활동과 환경운동 경향 연구)

  • Park, Jae-Shin;Chung, Young-Mee
    • Journal of the Korean Society for information Management
    • /
    • v.27 no.3
    • /
    • pp.83-102
    • /
    • 2010
  • This study aims to understand and compare the characteristics of two major approaches to solving global environmental problems - an academic approach including scholarly activities of environmental sciences and a practical approach of environmental movements led by NGOs - by employing informetric analysis methods. Knowledge structure of environmental sciences is depicted through co-citation networks of subject categories assigned to the cited journals in the discipline of environmental sciences for the 10-year period from 2000 to 2009. Furthermore, major interests of environmental NGOs are identified on the basis of external link data collected from web sites of the NGOs. Co-word analyses are also performed using the texts of journal papers in environmental sciences as well as news articles provided by NGO sites. Through the analyses, dominant subject areas of environmental sciences and environmental movements are identified demonstrating similarities and differences between the two approaches.

Sentiment Classification considering Korean Features (한국어 특성을 고려한 감성 분류)

  • Kim, Jung-Ho;Kim, Myung-Kyu;Cha, Myung-Hoon;In, Joo-Ho;Chae, Soo-Hoan
    • Science of Emotion and Sensibility
    • /
    • v.13 no.3
    • /
    • pp.449-458
    • /
    • 2010
  • As occasion demands to obtain efficient information from many documents and reviews on the Internet in many kinds of fields, automatic classification of opinion or thought is required. These automatic classification is called sentiment classification, which can be divided into three steps, such as subjective expression classification to extract subjective sentences from documents, sentiment classification to classify whether the polarity of documents is positive or negative, and strength classification to classify whether the documents have weak polarity or strong polarity. The latest studies in Opinion Mining have used N-gram words, lexical phrase pattern, and syntactic phrase pattern, etc. They have not used single word as feature for classification. Especially, patterns have been used frequently as feature because they are more flexible than N-gram words and are also more deterministic than single word. Theses studies are mainly concerned with English, other studies using patterns for Korean are still at an early stage. Although Korean has a slight difference in the meaning between predicates by the change of endings, which is 'Eomi' in Korean, of declinable words, the earlier studies about Korean opinion classification removed endings from predicates only to extract stems. Finally, this study introduces the earlier studies and methods using pattern for English, uses extracted sentimental patterns from Korean documents, and classifies polarities of these documents. In this paper, it also analyses the influence of the change of endings on performances of opinion classification.

  • PDF

Analyzing the Study Trends of 'Sense of Place' Using Text Mining Techniques (텍스트마이닝 기법을 활용한 국내외 장소성 관련 연구동향 분석)

  • Lee, Ina;Kim, Hea-Jin
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.30 no.2
    • /
    • pp.189-209
    • /
    • 2019
  • Main Path Analysis (MPA) is one of the text mining techniques that extracts the core literature that contributes knowledge transfer based on citation information in the literature. This study applied various text mining techniques to abstract of the paper related with sense-of-place, which is published at Korea and abroad from 1990 to 2018 so that could discuss in a macro perspective. The main path analysis results showed that from 1990, overseas research on sense-of-place has been carried out in the order of personal identity, public land management, environmental education and urban development-related areas. Also, by using the network analysis, this study found that sense-of-place was discussed at various levels in Korea, including urban development, culture, literature, and history. On the other hand, it has been found that there are few topic changes in international studies, and that discussions on health, identity, landscape and urban development have been going on steadily since the 1990s. This study has implications that it presents a new perspective of grasping the overall flow of relevant research.

Export Control System based on Case Based Reasoning: Design and Evaluation (사례 기반 지능형 수출통제 시스템 : 설계와 평가)

  • Hong, Woneui;Kim, Uihyun;Cho, Sinhee;Kim, Sansung;Yi, Mun Yong;Shin, Donghoon
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.3
    • /
    • pp.109-131
    • /
    • 2014
  • As the demand of nuclear power plant equipment is continuously growing worldwide, the importance of handling nuclear strategic materials is also increasing. While the number of cases submitted for the exports of nuclear-power commodity and technology is dramatically increasing, preadjudication (or prescreening to be simple) of strategic materials has been done so far by experts of a long-time experience and extensive field knowledge. However, there is severe shortage of experts in this domain, not to mention that it takes a long time to develop an expert. Because human experts must manually evaluate all the documents submitted for export permission, the current practice of nuclear material export is neither time-efficient nor cost-effective. Toward alleviating the problem of relying on costly human experts only, our research proposes a new system designed to help field experts make their decisions more effectively and efficiently. The proposed system is built upon case-based reasoning, which in essence extracts key features from the existing cases, compares the features with the features of a new case, and derives a solution for the new case by referencing similar cases and their solutions. Our research proposes a framework of case-based reasoning system, designs a case-based reasoning system for the control of nuclear material exports, and evaluates the performance of alternative keyword extraction methods (full automatic, full manual, and semi-automatic). A keyword extraction method is an essential component of the case-based reasoning system as it is used to extract key features of the cases. The full automatic method was conducted using TF-IDF, which is a widely used de facto standard method for representative keyword extraction in text mining. TF (Term Frequency) is based on the frequency count of the term within a document, showing how important the term is within a document while IDF (Inverted Document Frequency) is based on the infrequency of the term within a document set, showing how uniquely the term represents the document. The results show that the semi-automatic approach, which is based on the collaboration of machine and human, is the most effective solution regardless of whether the human is a field expert or a student who majors in nuclear engineering. Moreover, we propose a new approach of computing nuclear document similarity along with a new framework of document analysis. The proposed algorithm of nuclear document similarity considers both document-to-document similarity (${\alpha}$) and document-to-nuclear system similarity (${\beta}$), in order to derive the final score (${\gamma}$) for the decision of whether the presented case is of strategic material or not. The final score (${\gamma}$) represents a document similarity between the past cases and the new case. The score is induced by not only exploiting conventional TF-IDF, but utilizing a nuclear system similarity score, which takes the context of nuclear system domain into account. Finally, the system retrieves top-3 documents stored in the case base that are considered as the most similar cases with regard to the new case, and provides them with the degree of credibility. With this final score and the credibility score, it becomes easier for a user to see which documents in the case base are more worthy of looking up so that the user can make a proper decision with relatively lower cost. The evaluation of the system has been conducted by developing a prototype and testing with field data. The system workflows and outcomes have been verified by the field experts. This research is expected to contribute the growth of knowledge service industry by proposing a new system that can effectively reduce the burden of relying on costly human experts for the export control of nuclear materials and that can be considered as a meaningful example of knowledge service application.

Analyzing Contextual Polarity of Unstructured Data for Measuring Subjective Well-Being (주관적 웰빙 상태 측정을 위한 비정형 데이터의 상황기반 긍부정성 분석 방법)

  • Choi, Sukjae;Song, Yeongeun;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.83-105
    • /
    • 2016
  • Measuring an individual's subjective wellbeing in an accurate, unobtrusive, and cost-effective manner is a core success factor of the wellbeing support system, which is a type of medical IT service. However, measurements with a self-report questionnaire and wearable sensors are cost-intensive and obtrusive when the wellbeing support system should be running in real-time, despite being very accurate. Recently, reasoning the state of subjective wellbeing with conventional sentiment analysis and unstructured data has been proposed as an alternative to resolve the drawbacks of the self-report questionnaire and wearable sensors. However, this approach does not consider contextual polarity, which results in lower measurement accuracy. Moreover, there is no sentimental word net or ontology for the subjective wellbeing area. Hence, this paper proposes a method to extract keywords and their contextual polarity representing the subjective wellbeing state from the unstructured text in online websites in order to improve the reasoning accuracy of the sentiment analysis. The proposed method is as follows. First, a set of general sentimental words is proposed. SentiWordNet was adopted; this is the most widely used dictionary and contains about 100,000 words such as nouns, verbs, adjectives, and adverbs with polarities from -1.0 (extremely negative) to 1.0 (extremely positive). Second, corpora on subjective wellbeing (SWB corpora) were obtained by crawling online text. A survey was conducted to prepare a learning dataset that includes an individual's opinion and the level of self-report wellness, such as stress and depression. The participants were asked to respond with their feelings about online news on two topics. Next, three data sources were extracted from the SWB corpora: demographic information, psychographic information, and the structural characteristics of the text (e.g., the number of words used in the text, simple statistics on the special characters used). These were considered to adjust the level of a specific SWB. Finally, a set of reasoning rules was generated for each wellbeing factor to estimate the SWB of an individual based on the text written by the individual. The experimental results suggested that using contextual polarity for each SWB factor (e.g., stress, depression) significantly improved the estimation accuracy compared to conventional sentiment analysis methods incorporating SentiWordNet. Even though literature is available on Korean sentiment analysis, such studies only used only a limited set of sentimental words. Due to the small number of words, many sentences are overlooked and ignored when estimating the level of sentiment. However, the proposed method can identify multiple sentiment-neutral words as sentiment words in the context of a specific SWB factor. The results also suggest that a specific type of senti-word dictionary containing contextual polarity needs to be constructed along with a dictionary based on common sense such as SenticNet. These efforts will enrich and enlarge the application area of sentic computing. The study is helpful to practitioners and managers of wellness services in that a couple of characteristics of unstructured text have been identified for improving SWB. Consistent with the literature, the results showed that the gender and age affect the SWB state when the individual is exposed to an identical queue from the online text. In addition, the length of the textual response and usage pattern of special characters were found to indicate the individual's SWB. These imply that better SWB measurement should involve collecting the textual structure and the individual's demographic conditions. In the future, the proposed method should be improved by automated identification of the contextual polarity in order to enlarge the vocabulary in a cost-effective manner.