• Title, Summary, Keyword: 핵심어 추출

Search Result 69, Processing Time 0.048 seconds

Analysis of press articles related to 'high school credit system' using BIGKinds system (빅카인즈(BIGKinds) 시스템을 활용한 '고교학점제' 관련 언론기사 분석)

  • Kwon, Choong-Hoon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • /
    • pp.99-100
    • /
    • 2020
  • 본 연구는 최근 우리나라 국민들의 주요 관심 교육정책인 '고교학점제' 관련 언론기사들을 한국언론재단의 빅카인즈(BIGKinds) 시스템을 활용하여 분석하였다. 본 연구에서는 2018년 1월 1일부터 2019년 11월 30일까지 기간을 설정한 후, 총 54개 언론사의 '고교학점제' 관련기사들을 추출하였다. 그 다음, 추출된 '고교학점제' 관련 기사들을 대상으로 뉴스트렌드 분석, 네트워크 지도 구현, 핵심어 추출 및 워드클라우드 제시 등의 연구과정을 거쳤다. 본 연구결과는 '고교학점제'의 정책 진행 과정성의 과제 및 쟁점들을 해결하는데 기초자료로 활용될 수 있을 것으로 기대된다.

  • PDF

A Study on the XML DTD Design of Query for Integrated Retrieval of Heterogeneous Distributed Databases (이질적 분산 데이터베이스의 통합검색을 위한 질의어 XML DTD 설계에 관한 연구)

  • 이성진;이응봉
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • /
    • pp.125-130
    • /
    • 2001
  • 정보 저장 검색 기술의 발달로 여러 개의 데이터베이스를 한꺼번에 검색할 수 있는 분산통합검색 시스템에 관심이 증가하고 있다. 그러나 데이터베이스의 종류 및 검색방식이 다양하기 때문에 분산통합검색 시스템의 구축에는 통합검색의 확장성과 데이터베이스간의 독립 운영성이 떨어지는 문제가 있다. 따라서 본 고에서는 이러한 문제점 해결을 위해 기존 데이터베이스들의 질의 구조를 분석해서 질의 구조의 핵심 요소들과 관련 요소들을 추출한 후, XML을 사용하여 대부분의 데이터베이스의 질의어를 포괄할 수 있는 질의어 Meta Format을 설계한다. 이렇게 작성한 표준화된 XML 질의어 Meta Format(DTD)은 분산통합검색에 적용되어 분산통합검색 시스템과 지역 데이터베이스들간의 독립 운영성 및 확장성을 증대시킬 전망이다.

  • PDF

A Study of Fundamental Frequency for Focused Word Spotting in Spoken Korean (한국어 발화음성에서 중점단어 탐색을 위한 기본주파수에 대한 연구)

  • Kwon, Soon-Il;Park, Ji-Hyung;Park, Neung-Soo
    • The KIPS Transactions:PartB
    • /
    • v.15B no.6
    • /
    • pp.595-602
    • /
    • 2008
  • The focused word of each sentence is a help in recognizing and understanding spoken Korean. To find the method of focused word spotting at spoken speech signal, we made an analysis of the average and variance of Fundamental Frequency and the average energy extracted from a focused word and the other words in a sentence by experiments with the speech data from 100 spoken sentences. The result showed that focused words have either higher relative average F0 or higher relative variances of F0 than other words. Our findings are to make a contribution to getting prosodic characteristics of spoken Korean and keyword extraction based on natural language processing.

Improving University Homepage FAQ Using Semantic Network Analysis (의미 연결망 분석을 활용한 대학 홈페이지 FAQ 개선방안)

  • Ahn, Su-Hyun;Lee, Sang-Jun
    • Journal of Digital Convergence
    • /
    • v.16 no.9
    • /
    • pp.11-20
    • /
    • 2018
  • The Q&A board is widely used as a means of communicating service enquiries, and the need for efficient management of the enquiry system has risen because certain questions are being repeatedly and frequently registered. This study aims to construct a student-centered FAQ, centered on the unstructured data posted on the university homepage's Q&A board. We extracted major keywords from 690 postings registered in the recent 3 years, and conducted the semantic network analysis to find the relationship between the keywords and the centrality analysis in order to carry out network visualization. The most central keywords found through the analysis, in order of centrality, were application, curriculum, credit point, completion, graduation, approval, period, major, portal, department. Also, the major keywords were classified into 8 groups of course, register, student life, scholarship, library, dormitory, IT and commute. If the most frequent questions are organized into these areas to form the FAQ, based on the results above, it is expected to contribute to user convenience and the efficiency of administration by simplifying the service enquiry process for repeated questions, as well as enabling smooth two-way communication among the members of the university.

Analysis of Trends of Character-Related Research in Science Education (과학교육에서 인성 관련 연구의 동향 분석)

  • Nam, Ilkyun;Im, Sungmin
    • Journal of The Korean Association For Science Education
    • /
    • v.37 no.3
    • /
    • pp.493-505
    • /
    • 2017
  • The purpose of this study is to investigate the trends of character-related research in science education by analyzing science education research literatures in South Korea. To this end, literatures on character were extracted from the KCI-listed journals and theses from 1990 to December 2016, and analyzed according to the criteria such as terms relating to character, year of publication, research design and method, and research content. A total of 54 KCI-listed papers and 67 theses were extracted. As a result, 46%, 49%, and 5% of the researches include the terms like character, ethic, and moral in their titles. According to the year of publication, it was found that the number of research papers related to character increased rapidly by more than two times in 2012 as compared to the past years. According to research objects, researches about gifted students were the most common, and when considering the ratio of gifted students to general students, many studies related to character concentrated on gifted students. Starting 2009, research papers on qualitative and hybrid research design begin to advance as compared the number of papers in quantitative research design. With regards to research methods used, seven methods were classified; five of them ranged from 16% to 19% while interpretive research method was 12% and test tool validity study was the lowest at 2%. By extracting 30 representative keywords so as to analyze the contents of character-related researches, we found various implications to character in relation to nature and researches about SSI, etc. As time passed by, the contents of character-related research in science education became more diversified and the number of researches increased. New research contents appeared due to the needs of the times.

A Study on the Integration of Information Extraction Technology for Detecting Scientific Core Entities based on Large Resources (대용량 자원 기반 과학기술 핵심개체 탐지를 위한 정보추출기술 통합에 관한 연구)

  • Choi, Yun-Soo;Cheong, Chang-Hoo;Choi, Sung-Pil;You, Beom-Jong;Kim, Jae-Hoon
    • Journal of Information Management
    • /
    • v.40 no.4
    • /
    • pp.1-22
    • /
    • 2009
  • Large-scaled information extraction plays an important role in advanced information retrieval as well as question answering and summarization. Information extraction can be defined as a process of converting unstructured documents into formalized, tabular information, which consists of named-entity recognition, terminology extraction, coreference resolution and relation extraction. Since all the elementary technologies have been studied independently so far, it is not trivial to integrate all the necessary processes of information extraction due to the diversity of their input/output formation approaches and operating environments. As a result, it is difficult to handle scientific documents to extract both named-entities and technical terms at once. In this study, we define scientific as a set of 10 types of named entities and technical terminologies in a biomedical domain. in order to automatically extract these entities from scientific documents at once, we develop a framework for scientific core entity extraction which embraces all the pivotal language processors, named-entity recognizer, co-reference resolver and terminology extractor. Each module of the integrated system has been evaluated with various corpus as well as KEEC 2009. The system will be utilized for various information service areas such as information retrieval, question-answering(Q&A), document indexing, dictionary construction, and so on.

A Korean Emotion Features Extraction Method and Their Availability Evaluation for Sentiment Classification (감정 분류를 위한 한국어 감정 자질 추출 기법과 감정 자질의 유용성 평가)

  • Hwang, Jae-Won;Ko, Young-Joong
    • Korean Journal of Cognitive Science
    • /
    • v.19 no.4
    • /
    • pp.499-517
    • /
    • 2008
  • In this paper, we propose an effective emotion feature extraction method for Korean and evaluate their availability in sentiment classification. Korean emotion features are expanded from several representative emotion words and they play an important role in building in an effective sentiment classification system. Firstly, synonym information of English word thesaurus is used to extract effective emotion features and then the extracted English emotion features are translated into Korean. To evaluate the extracted Korean emotion features, we represent each document using the extracted features and classify it using SVM(Support Vector Machine). In experimental results, the sentiment classification system using the extracted Korean emotion features obtained more improved performance(14.1%) than the system using content-words based features which have generally used in common text classification systems.

  • PDF

A Classification of Endings for an Efficient Morphological Analysis of Korean (고성능 한국어 형태소 분석을 위한 어미 분류)

  • 은종진;박선영
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • /
    • pp.41-47
    • /
    • 2000
  • 한국어 형태소 분석에서 가장 중요한 부분 중 하나가 바로 용언구(서술어)를 분석하는 것이다. 형태소 분석 뿐만 아니라 구문 분석, 의미 분석 단계에서도 정확한 용언구 분석은 매우 중요한 작업 중의 하나이다. 또한, 용언구에는 [체언+지정사+어미] 패턴도 포함되므로, 정보 검색기의 핵심 모듈인 명사 추출기(색인기)의 성능에도 용언구의 분석은 높은 비중을 차지한다. 본 논문에서는 용언구 분석의 정확성을 높이고, 견고하면서 속도도 향상시킬 수 있는 방법으로 새로운 어미 분류를 제안하고자 한다.

  • PDF

Dictionary Making for Disambiguation (동사의 애매성 해소를 위한 구문의미사전의 구축)

  • Song, Young-Bin;Chae, Young-Soog;Park, Yong-Il;Lee, Jun-Min;Seol, Kah-Young;Hwang, Hye-Ri;Han, Na-Ri;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • /
    • pp.280-287
    • /
    • 1999
  • 동사의 애매성이란 동일 동사 내부에서 공기하는 명사의 상충적 의미의 분포에 의해 발생한다. 이는 동일한 동사라 하더라도 명사의 상위개념, 흑은 개개의 명사에 따라 동사의 의미가 달라진다는 것을 의미한다. 동사의 애매성 해소를 위한 구문의미사전은 동사가 갖는 격틀과 논항에 오는 명사의 단어 집합에 의해 구성된다. 기계용 사전에서의 동사의 애매성이란 명사의 상위개념, 혹은 개개의 명사에 관한 정보가 결여될 때 나타난다. 지금까지의 구문의미사전은 개개의 동사가 갖는 격틀을 중심으로 논합명사의 예만을 제시하거나 명사의 상위개념을 기술하는 형식으로 구성되어 왔다. 이는 형식적인 패턴의 추출에는 유용하지만 대역어 선정을 위한 구문의미사전과 같은 섬세한 의미 정보를 필요로 하는 사전에서는 거의 효력을 발휘하지를 못한다. 다국어를 전제로 한 동사 대역어의 추출을 목적으로 하는 구문의미사전에서는 동사와 공기하는 논항명사의 철저한 추출과 검증에 의한 명사목록의 구축이 애매성 해소와 정확한 동사 대역어의 선정에 전제가 된다. 본 논문에서는 KAIST Corpus를 기반으로 현재 구축 중인 한국어 구문의미사전의 개요와 구축 과정에서 얻어진 방법론을 소개한다. 이 연구개발 결과는 과학기술부 KISTEP 특정연구개발과제 핵심소프트웨어개발 국어정보처리기술개발 중 "대용량 국어정보 심층 처리 및 품질 관리 기술 개발"의 지원을 받았다.

  • PDF

Syllables-based Named Entity Extraction and Automatic Corpus Construction using Bidirectional Dynamic LST (Bidirectional Dynamic LSTM 을 이용한 음절 단위 개체명 추출 및 자동화된 말뭉치 구축)

  • Oh, Sungsik;Lim, Changdae;Ahn, Keeho;Park, Weijin
    • Annual Conference on Human and Language Technology
    • /
    • /
    • pp.317-320
    • /
    • 2017
  • 개체명 인식은 자연어 문장에서 장소, 제작물, 사람 등 분류를 통한 의미 부여가 가능한 단어를 파악하는 기술로서 의미 분석을 위한 핵심 기술이다. 현재 많은 개체명 분석 관련 연구들은 형태소 분석 결과에 의존적인 형태를 갖고 있어서, 형태소 분석 결과의 정확성이 개체명 분석 결과의 성능에 영향을 미치고 있다. 본 연구에서는 형태소 분석 과정을 거치지 않는 음절 기반의 개체명 분석 기술을 제안하여 형태소 분석의 정확도가 낮은 통신어, 신조어 분석 성능을 향상하였다. 또한, 자동화된 방법으로 음절 단위 개체명 말뭉치 및 개체명 사전을 구축하는 프로세스를 정의하여 개체명 분석의 정확도 향상 및 인지 범주의 확대를 도모하였다. 본 연구에서 제안한 개체명 인식 기술은 한국어 개체명 표준에 기반한 129가지의 개체명 분류가 가능하며, 이는 자연어 처리 기술이 필요한 산업계에서 상용화하는데 큰 기여를 할 것으로 판단된다.

  • PDF