• Title, Summary, Keyword: 패턴인식

Search Result 2,107, Processing Time 0.047 seconds

An advanced PRPD Pattern recognition method considering frequency analysis of the PD signals detected in GIS (PD 신호의 주파수 분석이 고려된 GIS 절연 결함 분류를 위한 Advanced PRPD 패턴인식)

  • Park, Jae-Hong;Jung, Seung-Yong;Ryu, Chel-Hwi;Kim, Young-Hong;Lee, Young-Jo;Lim, Yun-Sok;Koo, Ja-Yoon
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.1443-1444
    • /
    • 2007
  • 지속적으로 증가되는 전기에너지 공급의 신뢰성을 높이기 위하여 전력설비 주요 사고 원인인 부분방전(PD : Partial Discharge)을 검출하고 결함원의 패턴인식 방법의 개발 필요성 날로 증가되고 있다. 본 논문은 부분방전의 패턴인식 확률을 높이기 위하여 검출된 부분방전의 주파수 분석을 이용하여 Conventional PRPD Analysis 방법의 결함 판독확률을 향상시키기 위하여 Advanced PRPD를 제안 한다. 이를 위하여, GIS(Gas Insulated Switchgear)의 주요 사고원인으로 인식되어 있는 결함들을 인위적으로 제작 후 삽입하여 부분방전을 발생시켜 자체 설계 개발된 UHF 내장형 센서를 이용하여 검출하였다. 새로이 제안하는 방법과 기존의 PRPD 방법의 인식률을 상호 비교하기 위하여, 두 가지 그룹을, 즉, 기존의 방법에 의한 것과 부분방전의 주파수 분석이 포함된 방법에 의한 데이터그룹을 구축하고 학습방법은 동일한 인공신경망 MLP (Multilayer Perceptron)를 이용하여 인식률과 학습시간을 동시에 비교하였다. 상호 비교 결과에 의하면, 후자의 방법이 인식확률 뿐만아니라 학습시간도 좋은 결과가 나타났다.

  • PDF

A Study on Face Recognition using Hierarchical Classification of Facial Principal Component (얼굴 주성분의 계층적 분류를 이용한 얼굴인식에 관한 연구)

  • Choi, Jae-Young;Kim, Nak-Bin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • /
    • pp.649-652
    • /
    • 2002
  • PCA 방법은 입력 차원을 수학적으로 줄일 수 있는 장점 때문에 패턴인식 부분에서 널리쓰이고 있다. 얼굴인식에서의 PCA는 학습 패턴의 분산을 최대로 하는 기저 벡터들인 고유얼굴을 만들어 얼굴인식이 필요한 영상을 이 기저 벡터에 투사시켜 이때 나온 인자들과 원래 각 개인의 대표 인자값과의 거리 비교로 얼굴을 인식하는 방법이다. 그러나 조명등의 영향에 매우 민감하며 거리값으로 얼굴을 인식하기 때문에 다양한 변화에 따라 오인식률이 높아진다. 이는 인식률을 높이고자 임계값을 높게 설정하는 과정에서 발생하는 오류이며, 이를 방지하기 위해 임계치를 낮게 설정하면 오거부율이 높아진다. 이에 본 연구에서는 PCA에 입력되는 패턴들을 사전에 비교, 분류하여 PCA 연산시에 분산과 변위를 최대한으로 가질 수 있도록 하였다. 그러하여, 기존의 PCA보다 상당히 낮은 임계값으로도 오거부율의 증가를 막았으며, 낮은 임계값 설정으로 인하여 오인식률을 낮추는 결과를 얻을 수 있었다. 이는 기존의 PCA 방법을 사용하는 인식시스템에서 종종 발생하는 허가되지 않아야 하는 외부인을 인증시키는 사례를 줄일 수 있다.

  • PDF

A Study on the Digital Implementation of Multi-layered Neural Networks for Pattern Recognition (패턴인식을 위한 다층 신경망의 디지털 구현에 관한 연구)

  • 박영석
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • /
    • pp.233-236
    • /
    • 2000
  • 본 연구에서는 패턴 인식용 다층 퍼셉트론 신경망을 순수 디지털 논리회로 모델로 전환 구현할 수 있도록 새로운 논리뉴런의 구조, 디지털 정형 다층논리신경망 구조, 그리고 패턴인식의 응용을 위한 다단 다층논리 신경망 구조를 제안하고, 또한 제안된 구조는 매우 단순하면서도 효과적인 증가적인 가법적(Incremental Additive) 학습알고리즘이 존재함을 보였다.

  • PDF

Classification of DNA Pattern Using Negative Selection (부정 선택을 이용한 DNA의 패턴 분류)

  • 이동욱;심귀보
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.766-768
    • /
    • 2003
  • 인간 및 다른 생물들의 DNA 서열이 밝혀짐에 따라 DNA 서열 정보를 이용할 수 있는 계산적 처리방식에 대한 요구가 늘어나고 있다. 본 논문에서는 DNA의 패턴을 분류할 수 있는 면역계 부정 선택에 기반한 알고리즘을 제안한다. 부정 선택은 면역세포 생성시 자신을 인식하지 않는 항원 인식부를 생성하기 위한 과정이다. 이 항원 인식부를 통해 자기와 비자기를 구별한다. 이것을 n개의 자기 또는 비자기 집단으로 확장하고 n개의 항원 집단을 구성하면 n개의 패턴 분류가 가능하다. 본 논문에서는 부정 선택에 기반한 DNA 염기 레벨에서의 패턴 분류방법과 아미노산 레벨에서의 패턴분류 방법을 제안한다.

  • PDF

Recognition of Multi-sensor based Car Driving Patterns for GeoVision (GeoVision을 위한 멀티 센서 기반 운전 패턴 인식)

  • Song, Chung-Won;Nam, Kwang-Woo;Lee, Chang-Woo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • /
    • pp.1185-1187
    • /
    • 2011
  • 이 논문에서는 운전자의 운전 패턴을 분석하기 위한 멀티 센서 기반의 패턴 분석 알고리즘을 제안한다. 센서를 통해 얻어진 주행 데이터의 상관 관계를 비교, 분석하여 주행 패턴을 인식한다. 가속도 센서에 작용하는 중력값과 지자기 센서의 방향 데이터을 통해 각 운전 패턴을 인식하는 정확도를 높이는데 이용하였다.

  • PDF

A Study on the Novel Optical/Digital Invariant Recognition for Recognizing Patterns with Straight Lines (직선패턴 인식을 위한 새로운 광/디지틀 불변 인식에 관한 연구)

  • Huh, Hyun;Jung, Dong-Gyu;Kang, Dong-Seung;Pan, Jae-Kyung;,
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.11
    • /
    • pp.116-123
    • /
    • 1994
  • A novel opto-digital pattern recognition method which has shift, rotation, and scale invariant properties is proposed for recognizing two dimensional images having straight lines. The algorithm is composed of three stages. In the first stage the line features of the image are extracted. The second stage imposes the shift, rotation, and scale invariant properties on the extracted features through normalizing procedure. The required normalizing equations are analytically explained. In the last stage, the artificial feedforward neural network is trained with the extracted features. In order to evaluated the proposed algorithm, nine different edge enhnaced binary images composed of straight lines are tested. Thus the proposed algorithm can recognize the patterns event though they are shifted, rotated, and scaled.

  • PDF

Development of Emotion Recognition Model based on Multi Layer Perceptron (MLP에 기반한 감정인식 모델 개발)

  • Lee Dong-Hoon;Sim Kwee-Bo
    • Journal of Korean Institute of Intelligent Systems
    • /
    • v.16 no.3
    • /
    • pp.372-377
    • /
    • 2006
  • In this paper, we propose sensibility recognition model that recognize user's sensibility using brain waves. Method to acquire quantitative data of brain waves including priority living body data or sensitivity data to recognize user's sensitivity need and pattern recognition techniques to examine closely present user's sensitivity state through next acquired brain waves becomes problem that is important. In this paper, we used pattern recognition techniques to use Multi Layer Perceptron (MLP) that is pattern recognition techniques that recognize user's sensibility state through brain waves. We measures several subject's emotion brain waves in specification space for an experiment of sensibility recognition model's which propose in this paper and we made a emotion DB by the meaning data that made of concentration or stability by the brain waves measured. The model recognizes new user's sensibility by the user's brain waves after study by sensibility recognition model which propose in this paper to emotion DB. Finally, we estimates the performance of sensibility recognition model which used brain waves as that measure the change of recognition rate by the number of subjects and a number of hidden nodes.

A Method on the Learning Speed Improvement of the Online Error Backpropagation Algorithm in Speech Processing (음성처리에서 온라인 오류역전파 알고리즘의 학습속도 향상방법)

  • 이태승;이백영;황병원
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.5
    • /
    • pp.430-437
    • /
    • 2002
  • Having a variety of good characteristics against other pattern recognition techniques, the multilayer perceptron (MLP) has been widely used in speech recognition and speaker recognition. But, it is known that the error backpropagation (EBP) algorithm that MLP uses in learning has the defect that requires restricts long learning time, and it restricts severely the applications like speaker recognition and speaker adaptation requiring real time processing. Because the learning data for pattern recognition contain high redundancy, in order to increase the learning speed it is very effective to use the online-based learning methods, which update the weight vector of the MLP by the pattern. A typical online EBP algorithm applies the fixed learning rate for each update of the weight vector. Though a large amount of speedup with the online EBP can be obtained by choosing the appropriate fixed rate, firing the rate leads to the problem that the algorithm cannot respond effectively to different learning phases as the phases change and the number of patterns contributing to learning decreases. To solve this problem, this paper proposes a Changing rate and Omitting patterns in Instant Learning (COIL) method to apply the variable rate and the only patterns necessary to the learning phase when the phases come to change. In this paper, experimentations are conducted for speaker verification and speech recognition, and results are presented to verify the performance of the COIL.

Implementation of Pattern Recognition Algorithm Using Line Scan Camera for Recognition of Path and Location of AGV (무인운반차(AGV)의 주행경로 및 위치인식을 위한 라인스캔카메라를 이용한 패턴인식 알고리즘 구현)

  • Kim, Soo Hyun;Lee, Hyung Gyu
    • Journal of the Korea Industrial Information Systems Research
    • /
    • v.23 no.1
    • /
    • pp.13-21
    • /
    • 2018
  • AGVS (Automated Guided Vehicle System) is a core technology of logistics automation which automatically moves specific objects or goods within a certain work space. Conventional AGVS generally requires the in-door localization system and each AGV equips expensive sensors such as laser, magnetic, inertial sensors for the route recognition and automatic navigation. thus the high installation cost is inevitable and there are many restrictions on route(path) modification or expansion. To address this issue, in this paper, we propose a cost-effective and scalable AGV based on a light-weight pattern recognition technique. The proposed pattern recognition technology not only enables autonomous driving by recognizing the route(path), but also provides a technique for figuring out the loc ation of AGV itself by recognizing the simple patterns(bar-code like) installed on the route. This significantly reduces the cost of implementing AGVS as well as benefiting from route modification and expansion. In order to verify the effectiveness of the proposed technique, we first implement a pattern recognition algorithm on a light-weight MCU(Micro Control Unit), and then verify the results by implementing an MCU_controlled AGV prototype.

The Development of Sensibility Recognition Model based on Multi Layer Perceptron (MLP에 기반한 감성인식 모델개발)

  • Lee Dong-Hun;Kim Dae-Uk;Sim Gwi-Bo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • /
    • pp.172-175
    • /
    • 2006
  • 최근 다양한 게임 문화가 급속도로 성장함에 따라 보다 새로운 개념의 게임을 찾는 사용자의 요구가 증대 되고 있다. 기존의 게임은 획일화 되고 일방적인 사용자 환경으로 사용자가 일방적으로 게임을 하는 방식이었다. 때문에 사용자의 감성 데이터를 이용하여 사용자에게 게임 환경이 맞춰지는 "사용자 맞춤형" 게임은 기존의 게임에서 보다 진보한 새로운 방식이 될 것이다. 이 방식을 사용하기 위해서는 우선 사용자의 생체 데이터나 감성데이터를 포함한 뇌파를 획득하는 방법이 필요하며 다음으로 획득된 뇌파를 통하여 현재 사용자의 감성 상태를 규명하는 패턴인식 기법이 중요한 문제가 된다. 본 논문에서는 뇌파를 통하여 현재 사용자의 감성 상태를 규명하고 인식할 수 있는 패턴인식 기법으로 Multi Layer Perceptron(MLP)을 사용한 감성인식모델을 제안한다. 본 논문에서 제안한 감성인식 모델의 실험을 위하여 특정 공간 내에서 여러 사용자의 감정별 뇌파를 측정하고 실험을 통하여 획득한 데이터로 감정 DB를 구축한다. 구축된 DB를 본 논문에서 제안한 감성인식 모델로 학습을 하고 학습이 완료된 후 새로운 사용자의 뇌파를 입력 받은 후 현재 사용자의 감성을 인식한다. 감성인식과 더불어 집중도를 측정 하는 실험도 병행 한다. 본 논문에서 제안한 감성인식 모델의 성능을 측정하기 위하여 사용자의 수에 따른 감성 인식률을 측정함으로서 본 논문에서 제안한 감성인식 모델의 성능을 확인한다.

  • PDF