• Title, Summary, Keyword: 패턴인식

Search Result 2,107, Processing Time 0.049 seconds

A Rating Recognition System of Broadcast Program using Template Matching (원형 정합 방법을 이용한 방송 프로그램의 등급 인식 시스템)

  • 황선주;조대제
    • The Journal of the Korea Contents Association
    • /
    • v.4 no.1
    • /
    • pp.24-31
    • /
    • 2004
  • This paper embodies the rating recognition system of broadcast program which can automatically acknowledge the broadcast pictures indicating the harmfulness rating, so prevent children from watching TV. This experiment was progressed as the course of extracting featured patterns (standard number patterns) and the proper patterns owned only by the concerned numbers from the numbers of standard font used by broadcasters, and comparing these patterns with input pictures and arranging them. The recognition rate of x-rating was remarkably high as a result of this experiment.

  • PDF

The Research of Shape Recognition Algorithm for Image Processing of Cucumber Harvest Robot (오이수확로봇의 영상처리를 위한 형상인식 알고리즘에 관한 연구)

  • Min, Byeong-Ro;Lim, Ki-Taek;Lee, Dae-Weon
    • Protected Horticulture and Plant Factory
    • /
    • v.20 no.2
    • /
    • pp.63-71
    • /
    • 2011
  • Pattern recognition of a cucumber were conducted to detect directly the binary images by using thresholding method, which have the threshold level at the optimum intensity value. By restricting conditions of learning pattern, output patterns could be extracted from the same and similar input patterns by the algorithm. The algorithm of pattern recognition was developed to determine the position of the cucumber from a real image within working condition. The algorithm, designed and developed for this project, learned two, three or four learning pattern, and each learning pattern applied it to twenty sample patterns. The restored success rate of output pattern to sample pattern form two, three or four learning pattern was 65.0%, 45.0%, 12.5% respectively. The more number of learning pattern had, the more number of different out pattern detected when it was conversed. Detection of feature pattern of cucumber was processed by using auto scanning with real image of 30 by 30 pixel. The computing times required to execute the processing time of cucumber recognition took 0.5 to 1 second. Also, five real images tested, false pattern to the learning pattern is found that it has an elimination rate which is range from 96 to 98%. Some output patterns was recognized as a cucumber by the algorithm with the conditions. the rate of false recognition was range from 0.1 to 4.2%.

A Fast-Loaming Algorithm for MLP in Pattern Recognition (패턴인식의 MLP 고속학습 알고리즘)

  • Lee, Tae-Seung;Choi, Ho-Jin
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.3
    • /
    • pp.344-355
    • /
    • 2002
  • Having a variety of good characteristics against other pattern recognition techniques, Multilayer Perceptron (MLP) has been used in wide applications. But, it is known that Error Backpropagation (EBP) algorithm which MLP uses in learning has a defect that requires relatively long leaning time. Because learning data in pattern recognition contain abundant redundancies, in order to increase learning speed it is very effective to use online-based teaming methods, which update parameters of MLP pattern by pattern. Typical online EBP algorithm applies fixed learning rate for each update of parameters. Though a large amount of speedup with online EBP can be obtained by choosing an appropriate fixed rate, fixing the rate leads to the problem that the algorithm cannot respond effectively to different leaning phases as the phases change and the learning pattern areas vary. To solve this problem, this paper defines learning as three phases and proposes a Instant Learning by Varying Rate and Skipping (ILVRS) method to reflect only necessary patterns when learning phases change. The basic concept of ILVRS is as follows. To discriminate and use necessary patterns which change as learning proceeds, (1) ILVRS uses a variable learning rate which is an error calculated from each pattern and is suppressed within a proper range, and (2) ILVRS bypasses unnecessary patterns in loaming phases. In this paper, an experimentation is conducted for speaker verification as an application of pattern recognition, and the results are presented to verify the performance of ILVRS.

Establishment of the ′Standard Hangul Phoneme into Character Conversion Rule′ (한국어 음가/ 한글 표기 변환을 위한 표준 규칙 제정)

  • 이계영;임재걸
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • /
    • pp.128-132
    • /
    • 2002
  • 한글 표기를 음가로 변환하는 규칙을 역으로 적용하여 음가를 한글 표기로 전환시키는 표준 규칙을 고안하는 것이 본 연구의 목표다. 이러한 표준 규칙은 음성인식에 반드시 필요한 귀중한 자료가 된다. 음성 인식은 표준으로 기록된 음성의 패턴과 입력을 비교하여 가장 유사한 패턴을 찾는 방법을 사용한다. 이때 표준 음성 패턴이 띄어쓰기 단위라면 수백만 개의 표준 패턴이 수록되어야 한다. 이렇게 하면 표준 패턴을 위한 데이터베이스도 너무 커지고 비교회수도 너무 많아져서 실용화가 불가능하다. 그래서, 음절단위로 인식하는 것이 바람직하다. 음절단위로 인식하면 인식된 음가가 한글 표기 문법에 맞지 않으므로, 인식 결과를 출력할 때에는 음가를 그대로 출력하는 것이 아니라 한글표기로 변환하여 표기해야 한다 이때, 본 연구의 연구 결과인 표준규칙을 사용한다.

  • PDF

Insect Footprint Recognition Using Trace Transform and Fuzzy Weighted Mean (Trace 변환과 퍼지 가중치 평균을 이용한 곤충 발자국 인식)

  • Shin, Bok-Suk;Kim, Kwang-Baek;Woo, Young-Woon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • /
    • pp.143-147
    • /
    • 2008
  • 이 논문에서는 곤충 발자국의 패턴을 인식하기 위해, Trace 변환을 이용하여 발자국의 인식에 필요한 특징을 추출하는 기법을 제안한다. Trace 변환을 이용하면 패턴의 이동, 회전, 반사에 불변하는 특징값을 얻을 수 있다. 이러한 특징값들은 곤충 발자국과 같이 다양한 변형이 존재하는 패턴을 인식하는 데에 적합하다. 이 방법은 특징값을 추출하기 위해서 병렬로 표현되는 trace-line을 따라 특징들을 일차적으로 도출하고, 또 다시 도출된 특징들은 diametric, circus 단계의 함수를 거치면서 새로운 특징값으로 재구성된다. 곤충의 발자국 패턴을 이용하여 실험한 결과 곤충 발자국의 이동, 회전 반사에 관계없이 동일한 특징값이 추출됨을 확인할 수 있고, 곤충발자국의 고유한 패턴을 찾아 인식하기 위해서 추출된 특징값들은 퍼지 가중치 평균을 이용하여 인식 실험을 수행하고 그 결과를 제시하였다.

  • PDF

Feature Extraction Using Trace Transform for Insect footprint Recognition (곤충 발자국 패턴 인식을 위한 Trace Transform 기반의 특징값 추출)

  • Shin, Bok-Suk;Cha, Eui-Young;Cho, Kyoung-Won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • /
    • pp.313-316
    • /
    • 2008
  • 이 논문에서는 곤충 발자국의 패턴을 인식하기 위해, 인식의 기본 단위인 세그먼트를 자동 추출하는 기법과 Trace transform을 이용하여 발자국 인식에 필요한 특징을 추출하는 기법을 제안하였다. Trace transform 방법을 이용하면 패턴의 크기, 이동, 회전, 반사에 불변하는 특징값을 얻을 수 있다. 이러한 특징값들은 곤충 발자국과 같이 다양한 변형이 존재하는 패턴을 인식하는 데에 적합하다. 특징값을 도출하기 위한 첫 번째 단계로는 추출된 세그먼트에 대한 Trace transform을 통해 새로운 Trace 이미지를 생성시킨다. 그런 다음 병렬로 표현되는 trace-line을 따라 특성 함수에 의해 특징들이 일차적으로 도출되고, 또 다시 도출된 특징들은 diametric, circus 단계의 함수를 거치면서 새로운 특징값으로 재구성된다. 2가지 서로 다른 곤충의 발자국 패턴을 이용하여 실험한 결과 곤충 발자국의 크기, 이동, 회전, 반사에 관계없이 인식에 적합한 특징값들이 추출됨을 확인할 수 있었다.

  • PDF

A New Thpe of Recurrent Neural Network for the Umprovement of Pattern Recobnition Ability (패턴 인식 성능을 향상시키는 새로운 형태의 순환신경망)

  • Jeong, Nak-U;Kim, Byeong-Gi
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.2
    • /
    • pp.401-408
    • /
    • 1997
  • Human gets almist all of his knoweledge from the recognition and the accumulation of input patterns,image or sound,the he gets theough his eyes and through his ears.Among these means,his chracter recognition,an ability that allows him to recognize characters and understand their meanings through visual information, is now applied to a pattern recognition system using neural network in computer. Recurrent neural network is one of those models that reuse the output value in neural network learning.Recently many studies try to apply this recurrent neural network to the classification of static patterns like off-line handwritten characters. But most of their efforts are not so drrdtive until now.This stusy suggests a new type of recurrent neural network for an deedctive classification of the static patterns such as off-line handwritten chracters.Using the new J-E(Jordan-Elman)neural network model that enlarges and combines Jordan Model and Elman Model,this new type is better than those of before in recobnizing the static patterms such as figures and handwritten-characters.

  • PDF

Word Recognition Using Multi-section Equi-segmentation and Fuzzy Inference (다구간 등분할법과 퍼지추론을 이용한 단어인식)

  • 최승호;최갑석
    • The Journal of the Acoustical Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.47-56
    • /
    • 1993
  • 본 논문은 다구간 등분할법과 퍼지추론으로 단어인식을 행하는 패턴매칭법을 제안한다. 패턴매칭시 발생되는 시간변동은 발성순서에 따라 등간격으로 다구간 분할함으로써 해결하고, 주파수변동은 구간의 차수별로 정해진 퍼지관계로부터 패턴간의 퍼지추론이 행해짐으로써 흡수한다. 추론에 사용된 삼각형 맴버쉽 함수의 중심값과 변동폭은 패턴의 평균값과 분산값으로 대응되도록 작성한다. 20대 남성 2인이 발성한 데이터를 사용하여, 제안된 방법으로 DDD지역명 28개를 구간수와 변동폭을 달리하여 인식실험한 결과, 8구간과 4배의 변동폭을 가질 때 92%의 인식을 얻었다.

  • PDF

Machine-printed Digit Recognition using Weighted Template Matching (가중 템플릿 정합을 이용한 인쇄체 아라비아 숫자 인식)

  • Jung Minchul
    • Proceedings of the KAIS Fall Conference
    • /
    • /
    • pp.180-183
    • /
    • 2005
  • 본 논문에서는 인쇄체 아라비아 숫자를 인식하기 위해 가중 템플릿 정합 방법을 제안한다. 가중 템플릿 정합은 패턴의 특징이 나타나는 영역에 해밍거리(Hamming Distance) 의 가중치를 두어 패턴 특징을 강조하여 숫자 패턴의 인식률을 높이는 것이다. 또한 패턴의 표면을 울퉁불퉁한 영상으로 만드는 한 두 픽셀의 랜덤 노이즈를 제거하기 위하여 본 연구에서는 트리밍(trimming) 기법을 적용하였다. 실험에서는 트리밍을 하지 않고 단순 템플릿 정합을 사용했을 때의 혼돈 행렬(confusion matrix)과 트리밍을 한 후 가중 템플릿 정합을 사용했을 때 혼돈 행렬을 서로 비교해 인식률이 크게 향상된 것을 보인다.

  • PDF

Adaptive SEJONG-NET (적응 학습 능력을 가진 SEJONG-NET)

  • Park, Hye-Young;Lee, Yill-Byung
    • Annual Conference on Human and Language Technology
    • /
    • /
    • pp.164-168
    • /
    • 1995
  • SEJONG-NET은 시각 문자패턴의 인식 과정을 설명 할 수 있는 적절한 패러다임을 제공하기 위해 척추동물의 시신경계 구조와 기능을 모방하여 만든 문자인식 모형이다. 초기에는 온라인 한글 인식을 위하여 설계되었으며, 이후 다양한 문자 집합이나 오프라인 한글 문자를 위한 모뎀들이 개발되었다. 현재까지 개발된 여러 SEJONG-NET 모델이 가지고 있는 문제점은 정직성이라고 할 수 있다. 즉, 설계 초기에 고려한 인식 대상 문자 집합과 문자 패턴에 대해서만 인식이 가능하고, 변형된 패턴을 기존의 패턴으로 근사화하여 해석하거나 새로운 패턴에 대하여 그것을 추가 학습하는 것이 불가능하다. 따라서 본 논문은 SEJONG-NET의 이러한 제약점을 해결하여 한글 인식 문제에 일반적으로 적용될 수 있도록 개선하는 것을 목적으로 한다. 이를 위해 상위층에서는 인간이 가지고 있는 문자에 대한 구조적인 지식을 표현하고 학습을 통해 추가적으로 습득할 수 있는 형태로 구현하였고, 하위층에서는 상위층에서 쓰이는 구조적인 지식을 표현하는데 적합한 특징을 추출해 낼 수 있도록 구현하였다. 특히 하위층에서는 인간의 초기 시각 피질에서 감지되는 특징들을 추출하도록 구현하여 사용되는 특징이 일반성을 가질 수 있도록 하였다. 이러한 방법을 기반으로 하여 본 논문에서는 변형된 패턴에 대한 적응 학습 능력을 가지며 인지과학적인 사실에 보다 충실하도록 개선된, 온라인 한글 인식을 위한 SEJONG-NET 모델을 제안한다.

  • PDF