• Title, Summary, Keyword: 패턴인식

Search Result 2,107, Processing Time 0.039 seconds

An Improvement of the Outline Mede Error Backpropagation Algorithm Learning Speed for Pattern Recognition (패턴인식에서 온라인 오류역전파 알고리즘의 학습속도 향상방법)

  • 이태승;황병원
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.616-618
    • /
    • 2002
  • MLP(multilayer perceptron)는 다른 패턴인식 방법에 비해 몇 가지 이점이 있어 다양한 문제영역에서 사용되고 있다 그러나 MLP의 학습에 일반적으로 사용되는 EBP(error backpropagation) 알고리즘은 학습시간이 비교적 오래 걸린다는 단점이 있으며, 이는 실시간 처리를 요구하는 문제나 대규모 데이터 및 MLP 구조로 인해 학습시간이 상당히 긴 문제에서 제약으로 작용한다. 패턴인식에 사용되는 학습데이터는 풍부한 중복특성을 내포하고 있으므로 패턴마다 MLP의 내부변수를 갱신하는 은라인 계열의 학습방식이 속도의 향상에 상당한 효과가 있다. 일반적인 온라인 EBP 알고리즘에서는 내부 가중치 갱신시 고정된 학습률을 적용한다. 고정 학습률을 적절히 선택함으로써 패턴인식 응용에서 상당한 속도개선을 얻을 수 있지만, 학습률을 고정함으로써 온라인 방식에서 패턴별 갱신의 특성을 완전히 활용하지 못하는 비효율성이 발생한다. 또한, 학습도중 패턴군이 학습된 패턴과 그렇지 못한 패턴으로 나뉘고 이 가운데 학습된 패턴은 학습을 위한 계산에 포함될 필요가 없음에도 불구하고, 기존의 온라인 EBP에서는 에폭에 할당된 모든 패턴을 일률적으로 계산에 포함시킨다. 이 문제에 대해 본 논문에서는 학습이 진행됨에 따라 패턴마다 적절한 학습률을 적용하고 필요한 패턴만을 학습에 반영하는 패턴별 가변학습률 및 학습생략(COIL) 방댑을 제안한다. 제안한 COIL의 성능을 입증하기 위해 화자증명과 음성인식을 실험하고 그 결과를 제시한다.

  • PDF

Recognition of Car Driving Patterns using a 3-Axis Accelerometer and Orientation Sensor (3축 가속도 센서와 방향센서를 이용한 운전패턴 인식)

  • Song, Chung-Won;Nam, Kwang-Woo;Lee, Chang-Woo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • /
    • pp.7-10
    • /
    • 2012
  • 본 논문에서는 스마트폰을 이용하여 도로 주행 정보를 기록하고 운전자에게 패턴 별 주행정보를 제공하는 라이프로그(Lifelog) 형태의 서비스에 목적을 두고 있다. 운전자의 도로 주행 데이터를 데이터베이스화한 이 정보는 다양하게 이용될 수 있다. 주행 패턴 인식은 이벤트 구간 검출 과정을 통한 패턴 구간을 검출하고 가속도 센서와 방향 센서, 즉 멀티 센서 기반으로 주행패턴을 인식한다. 주행 패턴을 분석 후 시간 정보를 이용하여 촬영된 영상 데이터에서의 패턴 구간 영상을 같이 제공한다. 이렇게 패턴 구간의 센서 스트리밍 정보와 영상을 제공하면 운전자의 운전 성향 및 주행 기록을 분석하는데 이용될 수 있다. 따라서 주행패턴 인식 알고리즘을 프로토타입으로 제안한다.

  • PDF

A Study on DTW Reference Pattern Creation Using Genetic Algorithm (유전자 알고리듬을 이용한 DTW 참조패턴 생성에 관한 연구)

  • 서광석
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • /
    • pp.385-388
    • /
    • 1998
  • DTW를 이용한 음성인식에서는 참조패턴이 인식률에 절대적인 영향을 미치므로 가장 적합한 참조패턴의 생성이 중요한 요인으로 작용한다. 그러므로 인식률 향상을 위해 여러개의 참조패턴을 사용하는 방법이 있다. 그러나 이러한 방법은 게산량의 과다 및 사용 메모리의 증가 등이 단점으로 지적되고 있다. 따라서 본 논문에서는 참조패턴의 수를 줄이면서 높은 인식률을 얻기 위해 유전자 알고리듬을 이용하여 보다 우수한 참조패턴을 생성하여 음성인식에 적용하였다. 본 논문에서는 참조패턴 생성을 위하여 훈련에 참가한 자료를 서로 비교하여 DTW 거리값의 누적값이 최소가 되는 데이터를 선정하는 방법, 유전자 알고리듬을 이용한 방법으로 선정하는 방법으로 나누어 실험을 했고, 그 결과 누적값의 최소값을 이용하였을 경우 98.33%의 인식률을 얻을 수 있었던 반면에 유전자 알고리듬을 사용하였을 경우 100%의 화자종속 인식률을 얻을 수 있었다.

  • PDF

A Study on Pattern Recognition using Graph Theory (그래프 이론에 의한 패턴인식에 관한 연구)

  • Hur, Jung-Youn;Kim, Jung-Jong
    • Proceedings of the KAIS Fall Conference
    • /
    • /
    • pp.722-725
    • /
    • 2009
  • 본 논문에서는 문자인식, 손등 정맥 인식 등에 이용할 수 있는 패턴인식 기법으로 입력된 패턴을 전 처리하여 세선화한 후 유일성이 보장되는 행렬로 변환하는 방법에 관하여 연구 하였다. 입력된 패턴을 세선화 한 후 노드 중심으로 노드에 연결된 에지의 체인 코드와 유크리디안 거리를 노드를 중심으로 가중치와 체인코드를 이용한 행렬을 생성하고, 생성된 행렬의 고유치를 이용하여 인식의 기본 도구로 사용하였다. 이 때 연결된 에지의 방향 코드는 설정된 문턱치 값을 초과하는 변곡에 대하여 새로운 노드를 생성하였다. 이러한 방법을 손등 정맥 패턴 인식에 적용한 결과 인식률이 매우 우수함을 확인할 수 있었다.

  • PDF

Integrated Neural Networks Model for Handwritten Pattern Recognition using Segment Recombination (연속 필기 패턴 인식을 위한 세그먼트 재조합 기반 통합 신경망 모델)

  • 장경익;류정우;박성진;김명원
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.399-401
    • /
    • 1998
  • 단일 문자 인식과 달리 연속 필기 패턴의 인식은 근본적인 필기 패턴의 형태적 특성을 충분히 고려할 필요가 있으며 다양한 형태의 패턴에 대한 특징이나 정보를 사용하여 종합적으로 판단 할 수 있는 모델의 유연성이 요구된다. 신경망의 학습 기능은 패턴의 왜곡과 잡음 등에 크게 영향을 받지 않으면서 인식에 필요한 특징의 추출이나 패턴 부류에 해당하는 노드의 반응을 스스로 학습시킬 수 있고, 다양한 형태의 정보를 쉽게 통합할 수 있는 유연한 구조를 제공한다. 퍼지 이론(Fuzzy theory)은 일정한 규칙이나 수학적 모델로 표현하기 어려운 패턴의 애매한 특징을 모델링할 수 있기 때문에 인식 대상의 총체적 특징을 추출해 신경망에 효과적으로 적용할 수 있다. 본 논문에서는 연속 필기 숫자 패턴을 인식을 위한 신경망과 퍼지 이론을 이용한 통합 신경망 모델을 제안한다.

  • PDF

Neural Network Handwriting Recognition Using Middle Point Algorithm (중간점 알고리즘을 이용한 신경회로망 필기체 패턴인식)

  • So, A-Ram;Shin, Byeong-Seok
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.394-397
    • /
    • 2007
  • 본 논문에서는 문자 인식의 특징 선별 방법으로 중간점 알고리즘을 이용하는 방법을 제안한다. 영상자료의 특징들로부터 중간점을 선별하고 심볼패턴을 이용하여 필기체 문자를 인식한다. 이 방법은 사전에 많은 심볼 패턴을 학습해야 하지만 한글과 영어의 높은 인식률을 보이고 있으며, 특히 복잡한 문자들의 경우 좋은 결과를 낸다. 여기서는 중간점 알고리즘으로 입력된 데이터를 심볼 패턴과 비교하고, 심볼 영역에 의해 최적 판별 기저를 탐색한 후, 그것을 특징으로 선택한다. 또한 사전 기능과 투명도 기능을 구현하여 필기체 인식을 이용한 여러 활용 방안을 제시한다.

  • PDF

An OTP Authorization System Based on Circular Pattern (원형 패턴 기반의 OTP 인증 시스템)

  • Kim, Ji Eun;Kim, Ho Jun;Park, Soo Hyeon;Hong, Seung Pyo;Song, Yang-Eui;Lee, Yong Kyu
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • /
    • pp.87-90
    • /
    • 2015
  • 기존의 OTP(One-Time Password) 인증 시스템은 OTP 단말을 휴대해야하는 불편함이 있으며 생성한 OTP 값을 그대로 OTP 단말에 출력하기 때문에 주변에 쉽게 노출될 수 있다. 또한, 기존의 9자리 패턴 인식 방법은 같은 패턴 지점을 연속으로 인식시킬 수 없고 패턴을 그리는 경로에 다른 패턴 지점이 포함될 수 있다는 한계가 있어 제한적인 패턴 결과를 가진다. 따라서, 본 논문은 원형 배치된 패턴 지점 기반의 OTP 대칭 값 패턴 인증 시스템을 통해 OTP 단말을 휴대할 필요가 없게 하고, OTP의 각 자리 값을 대칭 값으로 표현함으로써 OTP 값의 노출을 막는다. 또한 모든 OTP 값으로 패턴 인식이 가능하도록 하기 위해 패턴 지점을 원형 배치하는 방법을 제안한다. 이는 직접적으로 OTP 값이 노출될 가능성을 감소시키고, OTP 인증을 위한 패턴 인식에서 패턴 지점을 원형 배치함으로써 모든 OTP 값이 패턴으로 변환될 수 있도록 한다. 본 논문은 패턴 지점의 원형 배치와 대칭 값을 이용한 OTP 인증 시스템을 제안하여 새로운 OTP 인증 방법으로 패턴 인식을 적용할 수 있도록 한다.

Genetically Optimized Design of Fuzzy Neural Networks for Partial Discharge Pattern Recognition (부분방전 패턴인식을 위한 퍼지뉴럴네트워크의 유전자적 최적 설계)

  • Park, Keon-Jun;Kim, Hyun-Ki;Oh, Sung-Kwun;Choi, Won;Kim, Jeong-Tae
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.1891-1892
    • /
    • 2008
  • 본 논문에서는 부분방전 패턴인식을 위한 퍼지뉴럴네크워크(Fuzzy-Nueral Network를 설계한다. 퍼지뉴럴네트워크의 구조에서 규칙의 전반부는 개별적인 입력 공간을 분할하여 표현하고, 규칙의 후반부는 다항식으로서 표현되며 오류역전파 알고리즘을 이용하여 연결가중치인 후반부 다항식의 계수를 학습한다. 또한, 유전자 알고리즘을 이용하여 각 입력에 대한 전반부 멤버쉽함수의 정점과 학습률 및 모멤텀 계수를 최적으로 동조한다. 제안된 네트워크는 부분방전 패턴인식을 위해 다중 출력을 가지며, 초고압 XLPE 케이블 절연접속함의 모의결함에 대해 부분방전 신호를 패턴인식한다. 부분방전 신호는 PRPDA 방법을 통해 256개의 입력 벡터와 4개의 출력 벡터를 가지며, 보이드 방전, 코로나 방전, 표면 방전, 노이즈의 4개 클래스를 분류하며, 패턴인식률로서 결과를 분석한다.

  • PDF

Pattern Recognition Based on Multi-Valued Logic Neural Network (다치 신경망을 이용한 패턴 인식)

  • 김두완;허철회;정환묵
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • /
    • pp.241-244
    • /
    • 2002
  • 본 논문은 다치(MVL : Multiple Valued Logic) 신경망의 BP 알고리즘을 이용하여 패턴 인식에 응용하는 방법을 제안한다. 패턴처리에 필요한 원 패턴에 대한 물체 농도의 특징을 추출하고, 물체 농도의 특징을 다치로 사상시킨다. 또한 다치 신경망을 이용하여 원 패턴을 학습을 시킨 다음, 노이즈 패턴을 제거하여 원 패턴에 근접한 패턴을 인식하게 되므로, 패턴에 필요한 시간 및 기억 공간을 최소화할 수 있다.

  • PDF

Optimal Solutions for Various Error Functions (패턴인식을 위한 오차함수의 최적해)

  • Oh, Sang-Hoon
    • Proceedings of the Korea Contents Association Conference
    • /
    • /
    • pp.9-10
    • /
    • 2011
  • 패턴인식 문제의 학습을 위하여 여러 형태의 오차 함수들이 제안되었다. 이 논문에서는 이들 오차함수들에 대하여 그 특징을 통계학적으로 분석하여 비교하였다. 이 분석결과는 패턴인식기의 학습에 있어서 적합한 오차함수를 선정하는 이론적 토대를 마련해준다.

  • PDF