• Title, Summary, Keyword: 판내부지진활동

Search Result 9, Processing Time 0.029 seconds

Seismotectonic zoning by K-means clustering analysis in the Korean Peninsula (K-평균 군집분석에 의한 한반도에서의 지진지체구조구 구분)

  • Kim, Sung Kyun;Jeon, Jeong Soo;Jun, Myung-Soon
    • Journal of the Geological Society of Korea
    • /
    • v.53 no.5
    • /
    • pp.703-714
    • /
    • 2017
  • It is not easy to identify seismic source zone for use in probabilistic seismic hazard analysis in the intraplate region. There is no unique formal procedure for developing and evaluating seismic source models. The K-means cluster analysis is applied to seismicity data as a point source to delineate seismotectonic model for the Korean Peninsula in this study. The number of clusters K determined by KL index and Elbow methods appears to be five and nine, respectively. A seismotectonic model composed of five source zones is developed and an alternative model with nine zones is also proposed. Seismicity parameters estimated in each zone are presented.

Comments on Seismicity and Crustal Structure of the Korean Peninsula (한반도의 지진활동과 지각구조)

  • Lee, Kie-Hwa
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.3
    • /
    • pp.256-267
    • /
    • 2010
  • Earthquakes in the Korean Peninsula occur along the faults formed and boundaries between major geological units ruptured due to violent tectonic activities during the Mesozoic. E-W and/or ENE-SSW compressive stress regime resulting from collisions between the Eurasian plate and neighbouring the Indian plate, the Pacific plate and the Philippine plate trigger Korean earthquakes of thrust faulting with predominant strike-slip components along the mostly NNE-SSW trending active faults. Seismicity of the Korean peninsula has been moderate to low during the past 20 centuries except for the period from the 15th to the 18th centuries of exceptionally high seismicity, showing the typical irregularity of intraplate seismicity. The structure of the Korean peninsula is rather homogeneous without the Conrad discontinuity sharply dividing the upper and lower crust. Lateral heterogeneities exist in the crust. The crust with an average thickness of about 33 km is thicker in the mountainous region than the plain due to the Airy-type isostatic equilibrium maintained in the peninsula. Crustal P-wave velocity with average of about 6.3 km/sec increases gradually from the near surface to the Moho. The upper mantle P-wave (Pn) velocity is about 7.8 km/sec.

Seismic Characteristics of Tectonic Provinces of the Korean Peninsula (한반도 주요 지체구조구별 지진학적 특성)

  • Lee, Kie-Hwa;Kim, Jung-Ki
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.2
    • /
    • pp.91-98
    • /
    • 2000
  • The seismicity of the Korean Peninsula shows a very irregular pattern of strain release typical of the intraplate seismicity. The Korean Peninsula may be divided into several tectonic provinces of differing tectonics. In this analysis, seismicity parameters for each tectonic province are evaluated from historical as well as instrumental earthquake data of the Korean Peninsula to examine the differences in seismic characteristics among tectonic provinces. Statistical analysis of the earthquake data made of incomplete data before the Choseon Dynasty and complete data afterwards reveals that there exist no significant differences in seismic characteristics between the tectonic provinces. It turns out the b-value in the intensity-frequency relation for the whole peninsula is about 0.6 and the maximum earthquake is about MMI X. The results of this study may be used in the probabilistic seismic hazard analysis of the Korean Peninsula and in estimating the design earthquake in earthquake engineering.

  • PDF

Recent Research for the Seismic Activities and Crustal Velocity Structure (국내 지진활동 및 지각구조 연구동향)

  • Kim, Sung-Kyun;Jun, Myung-Soon;Jeon, Jeong-Soo
    • Economic and Environmental Geology
    • /
    • v.39 no.4
    • /
    • pp.369-384
    • /
    • 2006
  • Korean Peninsula, located on the southeastern part of Eurasian plate, belongs to the intraplate region. The characteristics of intraplate earthquake show the low and rare seismicity and the sparse and irregular distribution of epicenters comparing to interplate earthquake. To evaluate the exact seismic activity in intraplate region, long-term seismic data including historical earthquake data should be archived. Fortunately the long-term historical earthquake records about 2,000 years are available in Korea Peninsula. By the analysis of this historical and instrumental earthquake data, seismic activity was very high in 16-18 centuries and is more active at the Yellow sea area than East sea area. Comparing to the high seismic activity of the north-eastern China in 16-18 centuries, it is inferred that seismic activity in two regions shows close relationship. Also general trend of epicenter distribution shows the SE-NW direction. In Korea Peninsula, the first seismic station was installed at Incheon in 1905 and 5 additional seismic stations were installed till 1943. There was no seismic station from 1945 to 1962, but a World Wide Standardized Seismograph was installed at Seoul in 1963. In 1990, Korean Meteorological Adminstration(KMA) had established centralized modem seismic network in real-time, consisted of 12 stations. After that time, many institutes tried to expand their own seismic networks in Korea Peninsula. Now KMA operates 35 velocity-type seismic stations and 75 accelerometers and Korea Institute of Geoscience and Mineral Resources operates 32 and 16 stations, respectively. Korea Institute of Nuclear Safety and Korea Electric Power Research Institute operate 4 and 13 stations, consisted of velocity-type and accelerometer. In and around the Korean Peninsula, 27 intraplate earthquake mechanisms since 1936 were analyzed to understand the regional stress orientation and tectonics. These earthquakes are largest ones in this century and may represent the characteristics of earthquake in this region. Focal mechanism of these earthquakes show predominant strike-slip faulting with small amount of thrust components. The average P-axis is almost horizontal ENE-WSW. In north-eastern China, strike-slip faulting is dominant and nearly horizontal average P-axis in ENE-WSW is very similar with the Korean Peninsula. On the other hand, in the eastern part of East Sea, thrust faulting is dominant and average P-axis is horizontal with ESE-WNW. This indicate that not only the subducting Pacific Plate in east but also the indenting Indian Plate controls earthquake mechanism in the far east of the Eurasian Plate. Crustal velocity model is very important to determine the hypocenters of the local earthquakes. But the crust model in and around Korean Peninsula is not clear till now, because the sufficient seismic data could not accumulated. To solve this problem, reflection and refraction seismic survey and seismic wave analysis method were simultaneously applied to two long cross-section traversing the southern Korean Peninsula since 2002. This survey should be continuously conducted.

$\cdot$북 Bismarck plate와 PACMANUS 열수에서의 천부지각 구조

  • 홍종국;이상묵
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • /
    • pp.176-181
    • /
    • 2004
  • ${\cdot}$북 Bismarck 판은 호주판과 태평양 판 사이의 복잡한 판구조를 보이는 지역에 위치한다. 남${\cdot}$북 Bismarck 판 내부에서는 판구조 활동이 활발하게 일어나 지진의 발생빈도가 높고 활성 및 비활성화산이 많이 존재한다. 한국해양연구원은 Bismarck 해의 서부지역과 동 Manus 분지에서 판 경계부의 구조 및 열수구조의 밝히기 위하여 탄성파 탐사를 수행하였다. 탐사결과에 의하면 남${\cdot}$북 Bismarck 판의 경계부에는 주향이동단층대가 발달되어 있으며 이는 판의 경계를 나타내고 있다. PACMANUS 열수하부에는 돔 형태의 구조가 존재하며 이는 마그마 또는 이의 분화과정에서 형성된 지질학적인 구조로 추정된다.

  • PDF

Discussions on the September 2016 Gyeongju Earthquakes (2016년 9월 경주지진 소고(小考))

  • Lee, Kiehwa
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.3
    • /
    • pp.185-192
    • /
    • 2017
  • A sequence of earthquakes with the main shock $M_L$ 5.8 occurred on September 12 2016 in the Gyeongju area. The main shock was the largest earthquakes in the southern part of the Korean peninsula since the instrumental seismic observation began in the peninsula in 1905 and clearly demonstrated that the Yangsan fault is seismically active. The mean focal depth of the foreshock, main shock, and aftershock of the Gyeongju earthquakes estimated by the crustal model of single layer of the Korean peninsula without the Conrad discontinuity turns out to be 12.9 km, which is 2.8 km lower than that estimated based on the IASP91 reference model with the Conrad discontinuity. The distribution of the historical and instrumental earthquakes in the Gyeongju area indicates that the Yangsan fault system comprising the main Yangsan fault and its subsidiary faults is a large fracture zone. The epicenters of the Gyeongju earthquakes show that a few faults of the Yangsan fault system are involved in the release of the strain energy accumulated in the area. That the major earthquakes of Gyeongju earthquakes occurred not on the surface but below 10 km depth suggests the necessity of the study of the distribution of deep active faults of the Yangsan fault system. The magnitude of maximum earthquake of the Gyeongju area estimated based on the earthquake data of the area turns out to be 7.3. The recurrence intervals of the earthquakes over magnitudes 5.0, 6.0 and 7.0 based on the earthquake data since 1978, which is the most complete data in the peninsula, are estimated as 80, 670, and 5,900 years, respectively. The September 2016 Gyeongju earthquakes are basically intraplate earthquakes not related to the Great East Japan earthquake of March 11 2011 which is interplate earthquake.

Alternative Conceptions of High School Students about the Crust and Interior of the Earth (지각과 지구 내부에 대한 고등학생들의 대안 개념)

  • Jeong, Ku-Song;Jeong, Jin-Woo
    • Journal of the Korean earth science society
    • /
    • v.28 no.3
    • /
    • pp.266-276
    • /
    • 2007
  • This purpose of this study was to analyze high school students' alternative conceptions and understanding levels about rocks, crust, plate tectonics and interior of the Earth. Data were collected through surveys, drawing assignments, and interviews. A total of 158 high school students in the first grade were involved in this study. The results showed that students have lots of major alternative conceptions which are meaning and forming process of rock, distinction of continental crust and ocean crust, formation and disappearance of ocean crust, movement of plate, continental drift, activities of volcano and earthquake. Physical and chemical characteristics, including mantle and core state could be found through analyzing from drawings.

Geological Achievements of the 20th Century and Their Influence on Geological Thinking (20세기에 이룩된 지질과학 업적과 이것이 지질과학 사고방식에 끼친 영향)

  • Chang, Soon-Keun;Lee, Sang-Mook
    • Journal of the Korean earth science society
    • /
    • v.21 no.5
    • /
    • pp.635-646
    • /
    • 2000
  • Geological achievements of the 20th century revolutionized our views about geological understanding and concept. A good example is the concept of continental drift suggested early in the 20th century and later explained in terms of seafloor spreading and plate tectonics. Our understanding of the compositions of materials forming earth has also improved during the20th century. Radio and stable isotopes together with biostratigraphy and sequence stratigraphy allow us to interpret the evolution of sedimentary basins in terms of plate movement and sedimentation processes. The Deep Sea Drilling Project initiated in 1960s and continued as the Ocean Drilling Project in 1980s is one of the most successful international research observations, and new developments in computational techniques have provided a wholly new view about the interior of the earth. Most of the geological features and phenomena observed in deep sea and around continental margins are now explained in terms of global tectonic processes such as superplumes flowing up from the interior of our planet and interacting with such as Rodinia Pannotia and Nena back in the Precambrian time. The space explorations which began in the late 1950s opened up a new path to astrogeology, astrobiology, and astropaleontology. The impact theory rooted in the discovery of iridium and associated phenomena in 1980s revived Cuvier's catastrophism as a possible explanation for the extinctions of biotas found in the geological record of this planet. Due to the geological achievements made in the 20th century, we now have a better understanding of geologic times and processes that were too long to be grasped by human records.

  • PDF

Marine Terrace of the Jinha-Ilgwang Area, Southeast Korea (진하-일광 지역의 해안 단구)

  • 최성자
    • Economic and Environmental Geology
    • /
    • v.36 no.3
    • /
    • pp.233-242
    • /
    • 2003
  • The southeasternmost coastal area of the Korean peninsula has been regarded as a seismologically stable area as neither Quaternary faults nor earthquake activity has been reported. To clarify whether the active tectonic movement has occurred or not, a digital marine terrace mapping and fracture mapping have been done in the coastal area. Bed rocks are composed of the Cretaceous volcanic and sedimentary rocks and the Paleogene granite. Wave-cut platform in the area is smaller and narrower relative to that of the northern coastal area. Most of the platforms in the area have little Quaternary sediment. The platforms except the Holocene terrace (1 st terrace) can be divided into three steps. The lowest platform (2nd terrace) has an altitude of 8-11 m. The broad middle one (3rd terrace) is 17 to 22 m high. The highest terrace (4th terrace) is a narrow and sporadic bench with an altitude of about 44 m high. The lowest terrace is correlated to the 2nd terrace of the northern area, which corresponds to the oxygen isotopic stage 5a. The uplift rate calculated from a graphic method is 0.19 m/ky. This low uplift is typical of an intra-plate, suggesting that the area is tectonically stable. The elevation of the platforms tends slightly lower from the north to the south in the survey area. The decreasing altitude of the platforms towards the south is interpreted to result from a local block tilting during the Latest Pleistocene. This also indicates that the eastern coast of the Korean peninsula has been suffering a subsidence to the south.