• Title, Summary, Keyword: 파괴메카니즘

Search Result 139, Processing Time 0.063 seconds

A Study on the Failure Mechanisms of the Mixed-face Tunnels in Decomposed Granite (화강토지반내 복합막장터널의 파괴메카니즘 연구)

  • 신종호;이인근
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.4
    • /
    • pp.317-329
    • /
    • 2001
  • 서울지하철 터널의 상당 구간이 막장면이 풍화토에서 풍화암까지 변화하는 복합화강토지반에 건설되어 왔다. 화강암풍화지반은 심도에 따라 강도의 변화가 크며, 수위가 높고 투수성 지반인 특징을 갖는다. 터널은 주로 비원형 배수터널로 설계되고 NATM 공법으로 시공되었다. 이와 같은 여건의 터널현장에서 발생하였던 붕괴사례를 조사한 결과, 대부분의 붕괴가 터널 어깨 부근으로부터 시작되었고, 구조적으로 완전하지 않은 라이닝, 그리고 지하수와의 연관성 등의 공통적 특징이 확인되었다. 이러한 터널문제는 지반조건, 시공조건, 터널형상 등 경계조건이 복잡하여 한계평형 해석과 같은 종래의 해석적 방법으로 터널안정을 검토하기가 용이하지 않다. 그 가장 큰 이유중의 하나는 터널의 파괴메카니즘에 대한 분명한 정보를 알 수 없는데 있다. 파괴메카니즘의 조사에는 전통적으로 원심모형시험법이 많이 사용되어 왔다. 그러나 화강토지반내의 터널처럼 복잡한 경계조건을 갖는 터널문제에는 적용하기 어렵다. 따라서 이에 대한 하나의 대안으로서 본 논문에서는 지반거동의 비선형성을 고려하는 Coupled 수치해석법을 이용하여 파괴메카니즘을 조사하였다. 수치해석결과의 증분변위벡터, 누적소성편차변형률 그리고 속도특성치(velocity characteristics)의 분석을 통해 실제 붕괴사례와 잘 일치하는 명확한 파괴메카니즘을 파악할 수 있었다. 이로부터 복잡한 경계조건을 갖는 터널 문제의 안정해석을 위한 파괴메카니즘을 조사하는 수치해석적 접근방법을 제시하였다.

  • PDF

Earthquake Resistance Design for a Typical Bridge Substructure (일반교량 하부구조의 내진설계)

  • Kook, Seung-Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.3
    • /
    • pp.283-288
    • /
    • 2011
  • For the earthquake resistance design designer should provide that structural yielding process is principally designed with the ductile failure mechanism. In order to get the ductile failure mechanism for typical bridges, pier columns yielding should occur before that of connections. However domestic bridge design with unnecessary stiff substructure leads to unnecessary seismic loads and makes it difficult to get the ductile failure mechanism. Such a problem arises from the situation that earthquake resistant design is not carried out in the preliminary design step. In this study a typical bridge is selected as an analysis bridge and design strengths for connections and pier columns are determined in the preliminary design step by carrying out earthquake resistant design. It is shown through this procedure that it is possible to get the ductile failure mechanism with structural members determined by other design.

Centrifuge Model Tests on the Behavior and Failure Mechanism of Soil Nailing Systems Under Surcharges (하중재하시 소일네일링 구조물의 거동 및 파괴메카니즘에 관한 원심모형실험)

  • 유남재;김영길;박병수;홍영길
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.5
    • /
    • pp.5-16
    • /
    • 2001
  • 소일네일링 구조물의 설계 및 안정해석에 관한 지금까지의 연구는 대부분 굴착 배면지반의 자중만을 고려하여 연구 개발된 굴착사면에 인접하여 하중이 재하되는 경우, 그의 거동에 관한 연구는 미비한 실정이다. 따라서 본 연구에서는 원심모형시험기를 사용하여 하중재하시 소일네일링 구조물의 거동과 파괴 메카니즘에 관한 매개변수적 실험을 실시하였다. 매개변수적 실험에서는 네일의 길이 및 간격, 네일의 설치각, 하중재하위치 등을 다양하게 변화시키면서 1g 상태에서 축소모형실험을 실시하는 한편, 30g 및 50g까지 중력수준을 증가시킨 상태에서 상재하중실험을 실시하였다. 실험으로부터 얻어진 결과를 바탕으로 하중-침하 특성, 매개변수의 변화에 따른 영향, 중력수준의 증가에 따른 영향, 파괴메카니즘 등을 비교 분석하였다.

  • PDF

Failure Mechanism of Geosynthetic-Reinforced Segmental Retaining Wall in a Tiered Configuration (계단식 보강토옹벽의 파괴 메카니즘 연구)

  • Yoo, Chung Sik;Jung, Hyuk Sang;Lee, Bong Won
    • Journal of the Korean Geosynthetics Society
    • /
    • v.3 no.4
    • /
    • pp.13-19
    • /
    • 2004
  • This paper presents the results of an investigation on the failure mechanism of geosynthetic-reinforced segmental retaining walls in tiered arrangement using reduced-scale model tests. In this laboratory model tests, a reduced scale model of the full-scale geosynthetic-reinforced wall which was constructed in Geotechnical Experimental Site at Sungkyunkwan University was used to perform a study on the failure mechanism. In order to a high degree of realism, the geometry of the wall and the material properties were selected applying Similitude Laws was used to perform laboratory model tests. And contrary to the previous failure tests with various surcharge pressures, the failure by the tired wall weight was observed. Primary variables considered in the model tests include the different offset distance between the tiers and the different reinforcement length in the lower tier and as a result of the parametric study, a different failure pattern was observed.

  • PDF

Investigation on Failure Mechanism of Geosynthethic Reinforced Slopes (보강토 구조물 파괴 메카니즘에 관한 연구)

  • Yoo, Chung-Sik;Kim, Ki-Yeon;Lee, Sung-Woo;Lee, Bong-Won
    • Journal of the Korean Geosynthetics Society
    • /
    • v.4 no.2
    • /
    • pp.19-28
    • /
    • 2005
  • This paper presents a laboratory investigation on the failure mechanism of geosynthetic reinforced slopes using 1/5-scale reduced model. The components of the model were selected with due consideration of the similitude law and the step-by-step actual wall construction procedure was closely simulated. The model tests successfully replicated the failure mechanism with relative density, slope and vertical spacing.

  • PDF

A Study on the Bahavior and Failure Mechanism of Soil Nailing Walls using Centrifuge Model Tests (원심모형실험을 이용한 소일네일링 벽체의 거동 및 파괴메카니즘에 관한 연구)

  • Kim, Young-Gil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.12
    • /
    • pp.5963-5973
    • /
    • 2011
  • Current design and analyzing methods about soil nailing structures, developed on the basis of results obtained from experiments in laboratory or in field and numerical analyses, have applied different interaction mechanisms between the reinforced nails and the surrounding ground, and different safety factors against failure have been obtained. They might be proper approaches if the assumptions about rigidity of nails and ground conditions are met with actual conditions occurred in field. Otherwise, they would result in designing on analyzing in inappropriate ways so that it is needed to evaluate the validity of them. Therefore, in this research using the Centrifugal Model Testing, numerical parameters experiments about soil nailing structures' behavior and failure mechanism were performed. In the numerical parameters experiments, transmuted nail's length, setting angle, nail's front panel, stiffness variously, and increased the level of gravity until wall model was destroyed. Based on experimental results, we compared the effect, failure mechanism caused from parameters changes. By reviewing and comparing centrifugal model test results and methods currently in use, verified validity of existing methods.

No Collapse Design for Typical Bridges (일반교량의 붕괴방지설계)

  • Kook, Seung-Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.3
    • /
    • pp.163-172
    • /
    • 2014
  • The purpose of earthquake resistant design for typical bridges is the No Collapse Design and the Earthquake Resistant Design Part of Roadway Bridge Design Code provides a design process to construct the Ductile Failure Mechanism for the bridge structure. However, if it is not practical to provide the Ductile Failure Mechanism due to structure types or site conditions, the Brittle Failure Mechanism is an alternative way to get the No Collapse Design. As well as the existing design process constructing the Ductile Failure Mechanism, the Earthquake Resistant Design Part provides a ductility-based design process as an appendix, which is prepared for bridges with reinforced concrete piers. According to the new design process, designer determines a required response modification factor for substructure and transverse reinforcement for confinement therefrom. In this study, a typical bridge with steel bearing connections and reinforced concrete piers is selected for which the existing as well as the ductility-based design processes are applied and different results from the two design processes are identified. Based on the results, an earthquake resistant design procedure is proposed in which designers should consider the two design processes.

Model Test and Numerical Analysis for Failure Behaviour of Shallow Tunnel Considering Unsupported Tunnel Length (굴진장을 고려한 얕은 터널파괴거동에 대한 모형실험 및 수치해석)

  • Kim, Young-Min
    • Tunnel and Underground Space
    • /
    • v.15 no.6
    • /
    • pp.400-410
    • /
    • 2005
  • During excavation of shallow tunnels in soft ground, failure mechanism around the tunnel face have major influence on the stability of tunnels. In this paper, a series of laboratory tests under plane strain condition on the small scale of a shallow tunnel considering unsupported tunnel length has been performed. The results have shown that tunnel failure mechanism changes from failure mode 1 to failure mode 2 as unsupported tunnel length increases. By comparing the experimental and the numerical results, the loosening pressure for the shallow tunnel and progressive failure have been investigated.

Development of Earthquake Resistant Analysis Models for Typical Roadway Bridges (일반도로교의 내진해석모델 개발)

  • 국승규;김판배
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.4
    • /
    • pp.1-6
    • /
    • 2002
  • The structural safety required in general design is to be proved with safety factors provided for structural members in elastic range. But, for the safety requirement in the earthquake resistant design, a specific ductile failure mechanism in plastic range should be verified according to the structural configuration. Therefore such verifications should be done in the preliminary design stage by comparing various design alternatives. In the main design stage only a confirmation of the ductile failure mechanism is required. In this study typical roadway bridges are selected and analysis models are presented for the preliminary and main design. For the two models, vibration periods and mode shapes are compared and the multi-mode spectrum method is applied to determine failure mechanisms. The failure mechanisms obtained with the two models are compared to check the properness of the model used for the preliminary design, which may well be used as an earthquake resistant analysis model in practice.

Strength Model for Punching Shear of Flat Plate-Column Connections (플랫플레이트-기둥 접합부의 뚫림전단강도)

  • Choi Kyoung-Kyu;Park Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.2
    • /
    • pp.163-174
    • /
    • 2004
  • A number of experiments were performed to investigate the punching shear strength of flat plate-column connections. According to the experiments, the punching shear strength varies significantly with design parameters such as the column size of the connection, reinforcement ratio, and boundary condition. However, current design methods do not properly address the effects of such design parameters. In the present study, a theoratical approach using Rankine's failure cirterion was attempted to define the failure mechanism of the punching shear According to the study, the failure mechanism can be classified into the compression-controlled and the tension-controlled, depending on the amount of bottom re-bars placed at the connection, and the punching shear strength is also significantly affected by the flexural damage of slab. Based on the finding, a new strength model of punching shear was developed, and verified by the comparisons with existing experiments and nonlinear finite element analyses. The comparisons show that the proposed strength model addressing the effects of various design parameters can predict accurately the punching shear strength, compared to the existing strength models.