• Title, Summary, Keyword: 텍스트 마이닝

Search Result 669, Processing Time 0.037 seconds

Extracting Multi-type Elements Consisting of Multi-words from Sentences (문장으로부터 여러 단어로 구성된 여러 유형의 요소 추출)

  • Yang, Seon;Ko, Youngjoong
    • Annual Conference on Human and Language Technology
    • /
    • /
    • pp.73-77
    • /
    • 2014
  • 문장을 대상으로 특정 응용 분야에 필요한 요소를 자동으로 추출하는 정보 추출(information extraction) 과제는 자연어 처리 및 텍스트 마이닝의 중요한 과제 중 하나이다. 특히 추출해야할 요소가 한 단어가 아닌 여러 단어로 구성된 경우 추출 과정에서 고려되어야할 부분이 크게 증가한다. 또한 추출 대상이 되는 요소의 유형 또한 여러 가지인데, 감정 분석 분야를 예로 들면 화자, 객체, 속성 등 여러 유형의 요소에 대한 분석이 필요하며, 비교 마이닝 분야를 예로 들면 비교 주체, 비교 상대, 비교 술어 등의 요소에 대한 분석이 필요하다. 본 논문에서는 각각 여러 단어로 구성될 수 있는 여러 유형의 요소를 동시에 추출하는 방법을 제안한다. 제안 방법은 구현이 매우 간단하다는 장점을 가지는데, 필요한 과정은 형태소 부착과 변환 기반 학습(transformation-based learning) 두 가지이며, 파싱 혹은 청킹 같은 별도의 전처리 과정도 거치지 않는다. 평가를 위해 제안 방법을 적용하여 비교 마이닝을 수행하였는데, 비교 문장으로부터 각자 여러 단어로 구성될 수 있는 세 가지 유형의 비교 요소를 자동 추출하였으며, 실험 결과 정확도 84.33%의 우수한 성능을 산출하였다.

  • PDF

A Semantic Text Model with Wikipedia-based Concept Space (위키피디어 기반 개념 공간을 가지는 시멘틱 텍스트 모델)

  • Kim, Han-Joon;Chang, Jae-Young
    • The Journal of Society for e-Business Studies
    • /
    • v.19 no.3
    • /
    • pp.107-123
    • /
    • 2014
  • Current text mining techniques suffer from the problem that the conventional text representation models cannot express the semantic or conceptual information for the textual documents written with natural languages. The conventional text models represent the textual documents as bag of words, which include vector space model, Boolean model, statistical model, and tensor space model. These models express documents only with the term literals for indexing and the frequency-based weights for their corresponding terms; that is, they ignore semantical information, sequential order information, and structural information of terms. Most of the text mining techniques have been developed assuming that the given documents are represented as 'bag-of-words' based text models. However, currently, confronting the big data era, a new paradigm of text representation model is required which can analyse huge amounts of textual documents more precisely. Our text model regards the 'concept' as an independent space equated with the 'term' and 'document' spaces used in the vector space model, and it expresses the relatedness among the three spaces. To develop the concept space, we use Wikipedia data, each of which defines a single concept. Consequently, a document collection is represented as a 3-order tensor with semantic information, and then the proposed model is called text cuboid model in our paper. Through experiments using the popular 20NewsGroup document corpus, we prove the superiority of the proposed text model in terms of document clustering and concept clustering.

A Feature Selection Technique for an Efficient Document Automatic Classification (효율적인 문서 자동 분류를 위한 대표 색인어 추출 기법)

  • 김지숙;문현정;김영지;우용태
    • Proceedings of the Korea Database Society Conference
    • /
    • /
    • pp.295-302
    • /
    • 2001
  • 최근 대량의 텍스트 문서로부터 의미 있는 패턴이나 연관 규칙을 발견하기 위한 텍스트마이닝 기법에 대한 연구가 활발히 전개되고 있다. 하지만 비정형 텍스트 문서로부터 추출된 용어의 수는 불규칙적이고 일반적인 용어가 많이 추출되는 관계로 기존의 연관 규칙 탐사 방법을 사용하게 되면 무의미한 연관 규칙이 대량으로 생성되어 지식 정보를 효과적으로 검색하기 어렵다. 본 논문에서는 연관 규칙 탐사 기법을 이용하여 비감독학습 기법에 의해 대량의 문서를 효율적으로 분류하기 위한 대표 색인어 추출 기법을 제안하였다. 컴퓨터 분야의 논문을 대상으로 각 분야별 대표 색인어를 추출하여 유사한 문서끼리 분류하는 실험을 통해 제안된 방법의 효율성을 보였다.

  • PDF

Improvement Plan of Web Site FAQ using Text Mining : Focused on the S University Case (텍스트마이닝을 활용한 웹사이트 FAQ 개선방안: S대학교 사례를 중심으로)

  • Ahn, su-hyun;Jo, jeong-hyun;Lee, sang-jun
    • Proceedings of the Korea Contents Association Conference
    • /
    • /
    • pp.361-362
    • /
    • 2018
  • 본 연구는 대학 웹페이지의 Q&A(질의응답) 게시판에 게재된 비정형화 된 데이터를 수집한 후 텍스트마이닝과 네트워크 분석을 활용하여 자주 등장하는 키워드 간 연관 패턴을 파악하고자 한다. 분석결과를 바탕으로 FAQ(자주하는 질문) 게시판을 구성한다면 반복적인 질문에 대한 민원을 간소화함으로써 수요자의 편의성과 행정의 효율성 향상에 기여하고 나아가 원활한 양방향 소통이 가능할 것으로 기대한다.

  • PDF

Forecasting Emerging Technology in AMOLED Using Keyword Quantitative Analysis Based on Textmining (텍스트 마이닝 기반의 특허키워드정량분석을 이용한 AMOLED 부상기술 예측)

  • Choe, do-han;Kim, gab-jo;Park, sang-sung;Jang, dong-sik
    • Proceedings of the Korea Contents Association Conference
    • /
    • /
    • pp.365-366
    • /
    • 2013
  • 국가나 기업의 연구개발 사업에 있어서 기술예측의 중요성이 더욱 커짐에 따라 그 방법들 또한 다양해지고 있다. 그 중 한 방법으로 특허정보를 분석하여 미래 기술의 향방을 예측하는 방법이 있다. 본 논문에서는 텍스트 마이닝을 이용하여 특허문서에서 키워드를 추출하고 그 키워드들의 평균과 표준편차를 이용한 중요도와 시계열 자료를 이용한 부상도를 분석하여 부상기술을 예측해 보고자 한다. 이를 통해 기술예측 시 보다 신속하고 객관적인 판단을 가능케 하고자 한다.

  • PDF

Webdrama Analysis and Recommendation using Text Mining and Opinion Mining Technique of Social Media (소셜미디어 빅데이터의 텍스트 마이닝과 오피니언 마이닝 기법을 활용한 웹드라마 분석과 제안)

  • Oh, Se-Jong;Kim, Kenneth Chi Ho
    • Cartoon and Animation Studies
    • /
    • /
    • pp.285-306
    • /
    • 2016
  • With the increase use of smartphones, users can consume contents such as webtoon, webnovel and TV drama directly provided by the producers. In this Direct-to-Consumer era, webdrama services from the portal websites are increasing rapidly. Webdramas such as , , and can be analyzed in real time using responses such as unique users, likes, and comments. The analyses used in this research were Social Media Big Data Mining Method and Opinion Mining Method. Specific key words from webdrama can be extracted and viewers positive, neutral or negative emotion can be predicted from the words. The analyses of popular webdramas showed that the established K-Pop Idol member appearance and servicing portal site greatly influence the views, traffics, comments, and likes. Also, 'Mobile TV' proved the effectiveness as another platform other than television. Mobile targeted contents and robust business models still to be developed and identified. Overcoming these few tasks, Korea will be proven to be a webdrama content powerhouse.

A Text Classification System based on a Supervised Learning Algorithm (교사학습 알고리즘을 이용한 텍스트 분류 시스템)

  • 김진상;성정호;김성주
    • Proceedings of the Korea Database Society Conference
    • /
    • /
    • pp.421-430
    • /
    • 1998
  • 지식경영을 위한 다양한 대상 업무중에서 텍스트 데이터의 마이닝은 특히 중요하다. 그 이유는 텍스트 데이터가 양적인 면에서 가장 풍부하고, 또 발견할 수 있는 지식을 가장 많이 포함하고 있기 때문이다. 본 논문에서는 텍스트 데이터베이스에서 지식발견을 위한 한 과정으로 텍스트 데이터베이스 내의 텍스트들을 분류하는 기법을 기술한다. 특히 문서 분류 방법은 데이터베이스의 일부 데이터를 훈련, 예제로 간주하여 교사 학습 알고리즘을 통해 학습한 후 나머지 데이터를 이용해 분류 정확성을 검증 및 향상시킨다. 시험 데이터로는 인터넷의 뉴스그룹의 기사를 이용하였고, 시험 결과 분류의 정확성은 한글 및 영문 모두 최소 70% 이상으로 나타났다.

  • PDF

A Study on Text Mining Methods to Analyze Civil Complaints: Structured Association Analysis (민원 분석을 위한 텍스트 마이닝 기법 연구: 계층적 연관성 분석)

  • Kim, HyunJong;Lee, TaiHun;Ryu, SeungEui;Kim, NaRang
    • Journal of the Korea Industrial Information Systems Research
    • /
    • v.23 no.3
    • /
    • pp.13-24
    • /
    • 2018
  • For government and public institutions, civil complaints containing direct requirements of citizens can be utilized as important data in developing policies. However, it is difficult to draw accurate requirements using text mining methods since the nature of the complaint text is unstructured. In this study, a new method is proposed that draws the exact requirements of citizens, improving the previous text mining in analyzing the data of civil complaints. The new text-mining method is based on the principle of Co-Occurrences Structure Map, and it is structured by two-step association analysis, so that it consists of the first-order related word and a second-order related word based on the core subject word. For the analysis, 3,004 cases posted on the electronic bulletin board of Busan City for the year 2016 are used. This study's academic contribution suggests a method deriving the requirements of citizens from the civil affairs data. As a practical contribution, it also enables policy development using civil service data.

Analysis of the Yearbook from the Korea Meteorological Administration using a text-mining agorithm (텍스트 마이닝 알고리즘을 이용한 기상청 기상연감 자료 분석)

  • Sun, Hyunseok;Lim, Changwon;Lee, YungSeop
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.4
    • /
    • pp.603-613
    • /
    • 2017
  • Many people have recently posted about personal interests on social media. The development of the Internet and computer technology has enabled the storage of digital forms of documents that has resulted in an explosion of the amount of textual data generated; subsequently there is an increased demand for technology to create valuable information from a large number of documents. A text mining technique is often used since text-based data is mostly composed of unstructured forms that are not suitable for the application of statistical analysis or data mining techniques. This study analyzed the Meteorological Yearbook data of the Korea Meteorological Administration (KMA) with a text mining technique. First, a term dictionary was constructed through preprocessing and a term-document matrix was generated. This term dictionary was then used to calculate the annual frequency of term, and observe the change in relative frequency for frequently appearing words. We also used regression analysis to identify terms with increasing and decreasing trends. We analyzed the trends in the Meteorological Yearbook of the KMA and analyzed trends of weather related news, weather status, and status of work trends that the KMA focused on. This study is to provide useful information that can help analyze and improve the meteorological services and reflect meteorological policy.