• Title, Summary, Keyword: 텍스트 마이닝

Search Result 669, Processing Time 0.043 seconds

Examining the Intellectual Structure of Housing Studies in Korea with Text Mining and Factor Analysis (저자 프로파일링과 요인분석을 이용한 국내 주거학 분야의 지적 구조 분석)

  • Lee, Jae-Yun;Kim, Hee-Jeon;Ryoo, Jong-Duk
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.44 no.2
    • /
    • pp.285-308
    • /
    • 2010
  • This study analyzes the intellectual structure in domestic research of the Housing field, by utilizing text mining technique. Unlike the existing research that mainly uses text clustering in statistical analyses to identify subject specialties, core authors, and relationships between research areas, this study applied author profiling and factor analysis. To supplement the analysis of intellectual structure generated by text mining, and to perform evaluation on intellectual structure itself, two professionals in the housing field were interviewed. The intellectual structure, generated through text mining, was evaluated and showed its division of valid research areas that is slightly different from the traditional intellectual structure in the housing field.

Methodology for Applying Text Mining Techniques to Analyzing Online Customer Reviews for Market Segmentation (온라인 고객리뷰 분석을 통한 시장세분화에 텍스트마이닝 기술을 적용하기 위한 방법론)

  • Kim, Keun-Hyung;Oh, Sung-Ryoel
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.8
    • /
    • pp.272-284
    • /
    • 2009
  • In this paper, we proposed the methodology for analyzing online customer reviews by using text mining technologies. We introduced marketing segmentation into the methodology because it would be efficient and effective to analyze the online customers by grouping them into similar online customers that might include similar opinions and experiences of the customers. That is, the methodology uses categorization and information extraction functions among text mining technologies, matched up with the concept of market segmentation. In particular, the methodology also uses cross-tabulations analysis function which is a kind of traditional statistics analysis functions to derive rigorous results of the analysis. In order to confirm the validity of the methodology, we actually analyzed online customer reviews related with tourism by using the methodology.

Time Series Analysis of Patent Keywords for Forecasting Emerging Technology (특허 키워드 시계열 분석을 통한 부상 기술 예측)

  • Kim, Jong-Chan;Lee, Joon-Hyuck;Kim, Gab-Jo;Park, Sang-Sung;Jang, Dong-Sick
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.9
    • /
    • pp.355-360
    • /
    • 2014
  • Forecasting of emerging technology plays important roles in business strategy and R&D investment. There are various ways for technology forecasting including patent analysis. Qualitative analysis methods through experts' evaluations and opinions have been mainly used for technology forecasting using patents. However qualitative methods do not assure objectivity of analysis results and requires high cost and long time. To make up for the weaknesses, we are able to analyze patent data quantitatively and statistically by using text mining technique. In this paper, we suggest a new method of technology forecasting using text mining and ARIMA analysis.

Security Trend Analysis using Cloud System based on Text Mining (텍스트 마이닝 기반 클라우드 시스템을 이용한 보안 트렌드 분석)

  • Hwang, Myeongha;Ha, Suwook;In, Minkyo;Lee, Kangchan
    • Journal of Security Engineering
    • /
    • v.14 no.5
    • /
    • pp.345-352
    • /
    • 2017
  • Text mining has been introduced to analyze meaningful topics and trends in documents, and researches has been conducted in various fields. Since the international standard documents are written in relation to each subject, it becomes data for applying text mining. In this study, topic modeling using cloud system has conducted based on 471 documents belonging to the ITU-T X series, and representative topics are extracted by periods. Topic modeling has applied to 3,975 documents, and the trend analysis function was performed by using the occurrence rate extracted from each document. The result of this study would contribute to the invigoration of research in the field of international standards and security.

A Comparison of Text Mining Algorithms for Product Review Analysis (상품 리뷰 분석을 위한 텍스트 마이닝 기법의 비교)

  • Lee, Ji-Woong;Jin, Young-Taek
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • /
    • pp.882-884
    • /
    • 2019
  • 오늘날 정보화 시대에서는 온라인 쇼핑의 상품리뷰 등 대용량의 텍스트 문서가 존재하며 제품에 대한 정서적인 의견뿐만 아니라 제품 선호도 및 상품 비교와 같은 유용한 정보를 제공한다. 본 논문에서는 사용자가 작성한 상품 리뷰로부터 제품의 특성을 비교하는 비교의견을 추출하기 위해 적용한 다양한 텍스트 마이닝 기법의 비교 결과를 제시한다.

Text Assocation Pattern Extraction using NFP-tree Algorithm (NFP-Algorithm 알고리즘을 기반한 텍스트 연관 패턴 추출)

  • Yu, Soo-Kung;Kim, Kio-chung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • /
    • pp.97-100
    • /
    • 2004
  • 인터넷상에서 존재하는 많은 데이터베이스들 중 현실적으로 유용한 정보를 가지고 있는 것은 텍스트 데이타베이스이다. 텍스트 마이닝 기법에서 비구조적인 특징을 가진 텍스트 데이타로부터 유용한 정보를 분석하고 추출하여 연관된 패턴을 탐색하는 과정은 중요한 연구과제이다. 이에 본 논문은 인터넷에서 저장된 텍스트 데이터를 가지고 기존 텍스트 마이닝 기법 중 연관탐색 기법을 적용하여 사용자 중심의 연관된 패턴을 찾아서 의미있는 정보를 얻고자 한다. 탐색하기 위해 먼저 전처리 작업으로 용어의 객체를 추출하고. 추출된 각 객체들은 대용량 데이터에서 시간적, 공간적면에서 효율적인 연관탐색 기법인 NFP-Algorithm(N-most interesting k-itemsets Using FP-tree and FP-Growth)을 적용시켜서 의미있는 정보를 추출했다. 또한 Apriori계 Algorithm, FP-Algorithm, NFP-Algorithm을 비교하여 NFP-Algorithm이 시간적면에서 효율적임을 보여주었다.

  • PDF

Intelligent Wordcloud Using Text Mining (텍스트 마이닝을 이용한 지능적 워드클라우드)

  • Kim, Yeongchang;Ji, Sangsu;Park, Dongseo;Lee, Choong Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • /
    • pp.325-326
    • /
    • 2019
  • This paper proposes an intelligent word cloud by improving the existing method of representing word cloud by examining the frequency of nouns with text mining technique. In this paper, we propose a method to visually show word clouds focused on other parts, such as verbs, by effectively adding newly-coined words and the like to a dictionary that extracts noun words in text mining. In the experiment, the KoNLP package was used for extracting the frequency of existing nouns, and 80 new words that were not supported were added manually by examining frequency.

  • PDF

Disease related Gene Identification Using Literature and Google data (텍스트마이닝 기법과 구글데이터를 이용한 질병관련 유전자 식별)

  • Kim, Jeong-U;Kim, Hyeon-Jin;Park, Sang-Hyeon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • /
    • pp.1084-1087
    • /
    • 2013
  • 텍스트마이닝은(Text mining) 바이오분야에서 사용되는 도구 중 하나이다. 본 논문에서는 전립선암(Prostate cancer)과 관련된 질병 유전자(Disease gene)를 찾기 위해 텍스트마이닝을 이용하여 유전자 네트워크(Gene-network)를 구축하였다. 추가적으로 구글(Google) 검색을 통해 네트워크 내의 유전자 노드(Node)들 사이의 간선(Edge)에 새로운 가중치(Weight)를 추가하고 네트워크를 재구성하였다. 구축된 네트워크에서 노드와 노드 사이의 가중치를 기반으로 전립선암과 관련된 질병 유전자를 추출하였다. 본 논문의 방법은 성공적으로 네트워크를 구축하고 질병 유전자를 찾았으며, 구글 데이터를 사용하지 않고 네트워크를 구축하는 경우보다 더 높은 정확성을 입증했다.

  • PDF

A Study on Learners' Needs Analysis Using Text Mining Techniques : Focusing on SNS (텍스트 마이닝 기법을 이용한 학습 수요자 요구에 관한 연구 : SNS를 중심으로)

  • Lee, Myung-Suk;Lee, Kyung-Mi;Lim, Youg-Kyu;Han, Kyung-Im;Park, Hye-Jung
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • /
    • pp.259-261
    • /
    • 2016
  • 본 연구는 교양교육에 대한 학습 수요자의 요구와 현재 편성되어 있는 교양교육 교과목들에 대한 차이를 알아본다. 학습 수요자의 다양한 생각들을 SNS를 통해 데이터를 수집하고, 텍스트 마이닝 기법을 이용하여 유용한 정보를 발견하고 시각화 분석을 통해 학습자의 요구를 제시한다. 분석 결과로는 학습자는 교수자와 상호작용 잘되는 수업 방식, 학습자가 참여할 수 있는 수업, 자기주도 학습을 선호하였다. 또한 교양교육 교과목 개설로서는 취업에 필요한 외국어, 자격증 취득이 가능한 과목, 실생활에 적용할 수 있는 실용적인 과목들을 요구하여 실제 균형에 맞게 개설된 교과목과는 차이를 보임을 알 수 있었다.

  • PDF

Using Text Mining Techniques for Intrusion Detection Problem in Computer Network (텍스트 마이닝 기법을 이용한 컴퓨터 네트워크의 침입 탐지)

  • Oh Seung-Joon;Won Min-Kwon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.5
    • /
    • pp.27-32
    • /
    • 2005
  • Recently there has been much interest in applying data mining to computer network intrusion detection. A new approach, based on the k-Nearest Neighbour(kNN) classifier, is used to classify Program behaviour as normal or intrusive. Each system call is treated as a word and the collection of system calls over each program execution as a document. These documents are then classified using kNN classifier, a Popular method in text mining. A simple example illustrates the proposed procedure.

  • PDF