• Title, Summary, Keyword: 텍스트 마이닝

Search Result 669, Processing Time 0.044 seconds

In-depth Analysis of Soccer Game via Webcast and Text Mining (웹 캐스트와 텍스트 마이닝을 이용한 축구 경기의 심층 분석)

  • Jung, Ho-Seok;Lee, Jong-Uk;Yu, Jae-Hak;Lee, Han-Sung;Park, Dai-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.10
    • /
    • pp.59-68
    • /
    • 2011
  • As the role of soccer game analyst who analyzes soccer games and creates soccer wining strategies is emphasized, it is required to have high-level analysis beyond the procedural ones such as main event detection in the context of IT based broadcasting soccer game research community. In this paper, we propose a novel approach to generate the high-level in-depth analysis results via real-time text based soccer Webcast and text mining. Proposed method creates a metadata such as attribute, action and event, build index, and then generate available knowledges via text mining techniques such as association rule mining, event growth index, and pathfinder network analysis using Webcast and domain knowledges. We carried out a feasibility experiment on the proposed technique with the Webcast text about Spain team's 2010 World Cup games.

A Study on the Effect of Using Sentiment Lexicon in Opinion Classification (오피니언 분류의 감성사전 활용효과에 대한 연구)

  • Kim, Seungwoo;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.133-148
    • /
    • 2014
  • Recently, with the advent of various information channels, the number of has continued to grow. The main cause of this phenomenon can be found in the significant increase of unstructured data, as the use of smart devices enables users to create data in the form of text, audio, images, and video. In various types of unstructured data, the user's opinion and a variety of information is clearly expressed in text data such as news, reports, papers, and various articles. Thus, active attempts have been made to create new value by analyzing these texts. The representative techniques used in text analysis are text mining and opinion mining. These share certain important characteristics; for example, they not only use text documents as input data, but also use many natural language processing techniques such as filtering and parsing. Therefore, opinion mining is usually recognized as a sub-concept of text mining, or, in many cases, the two terms are used interchangeably in the literature. Suppose that the purpose of a certain classification analysis is to predict a positive or negative opinion contained in some documents. If we focus on the classification process, the analysis can be regarded as a traditional text mining case. However, if we observe that the target of the analysis is a positive or negative opinion, the analysis can be regarded as a typical example of opinion mining. In other words, two methods (i.e., text mining and opinion mining) are available for opinion classification. Thus, in order to distinguish between the two, a precise definition of each method is needed. In this paper, we found that it is very difficult to distinguish between the two methods clearly with respect to the purpose of analysis and the type of results. We conclude that the most definitive criterion to distinguish text mining from opinion mining is whether an analysis utilizes any kind of sentiment lexicon. We first established two prediction models, one based on opinion mining and the other on text mining. Next, we compared the main processes used by the two prediction models. Finally, we compared their prediction accuracy. We then analyzed 2,000 movie reviews. The results revealed that the prediction model based on opinion mining showed higher average prediction accuracy compared to the text mining model. Moreover, in the lift chart generated by the opinion mining based model, the prediction accuracy for the documents with strong certainty was higher than that for the documents with weak certainty. Most of all, opinion mining has a meaningful advantage in that it can reduce learning time dramatically, because a sentiment lexicon generated once can be reused in a similar application domain. Additionally, the classification results can be clearly explained by using a sentiment lexicon. This study has two limitations. First, the results of the experiments cannot be generalized, mainly because the experiment is limited to a small number of movie reviews. Additionally, various parameters in the parsing and filtering steps of the text mining may have affected the accuracy of the prediction models. However, this research contributes a performance and comparison of text mining analysis and opinion mining analysis for opinion classification. In future research, a more precise evaluation of the two methods should be made through intensive experiments.

Keyword Analysis of Two SCI Journals on Rock Engineering by using Text Mining (텍스트 마이닝을 이용한 암반공학분야 SCI논문의 주제어 분석)

  • Jung, Yong-Bok;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.25 no.4
    • /
    • pp.303-319
    • /
    • 2015
  • Text mining is one of the branches of data mining and is used to find any meaningful information from the large amount of text. In this study, we analyzed titles and keywords of two SCI journals on rock engineering by using text mining to find major research area, trend and associations of research fields. Visualization of the results was also included for the intuitive understanding of the results. Two journals showed similar research fields but different patterns in the associations among research fields. IJRMMS showed simple network, that is one big group based on the keyword 'rock' with a few small groups. On the other hand, RMRE showed a complex network among various medium groups. Trend analysis by clustering and linear regression of keyword - year frequency matrix provided that most of the keywords increased in number as time goes by except a few descending keywords.

Text Mining for Korean: Characteristics and Application to 2011 Korean Economic Census Data (한국어 텍스트 마이닝의 특성과 2011 한국 경제총조사 자료에의 응용)

  • Goo, Juna;Kim, Kyunga
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.7
    • /
    • pp.1207-1217
    • /
    • 2014
  • 2011 Korean Economic Census is the first economic census in Korea, which contains text data on menus served by Korean-food restaurants as well as structured data on characteristics of restaurants including area, opening year and total sales. In this paper, we applied text mining to the text data and investigated statistical and technical issues and characteristics of Korean text mining. Pork belly roast was the most popular menu across provinces and/or restaurant types in year 2010, and the number of restaurants per 10000 people was especially high in Kangwon-do and Daejeon metropolitan city. Beef tartare and fried pork cutlet are popular menus in start-up restaurants while whole chicken soup and maeuntang (spicy fish stew) are in long-lived restaurants. These results can be used as a guideline for menu development to restaurant owners, and for government policy-making process that lead small restaurants to choose proper menus for successful business.

Stock Prediction Using News Text Mining and Time Series Analysis (뉴스 텍스트 마이닝과 시계열 분석을 이용한 주가예측)

  • Ahn, Sung-Won;Cho, Sung-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.364-369
    • /
    • 2010
  • 본 논문에서는 뉴스 텍스트 마이닝을 수행하여 2005년 1월부터 2008년 12월까지 4년 간의 뉴스 데이터에 대해 주가에 호재인지 악재인지 여부에 대해 학습을 하고, 이를 근거로 신규 발행된 뉴스가 주가 상승 또는 하락에 영향을 미치는지를 예측하는 알고리즘을 제안한다. 뉴스 텍스트 마이닝을 위해 변형된 Bag of Words 모델과 Naive Bayesian 분류기법을 사용하였으며, 특히 주가 예측에 있어서 뉴스 마이닝에만 의존하던 기존의 관련 연구와는 달리 예측의 정확성을 높이기 위해 주가의 시계열 데이터 분석기법인 RSI를 추가로 작용하였다. 2009년 11월부터 2010년 2월까지 4개월간 42,355건의 뉴스 데이터에 대해 실험한 결과, 기존 연구 대비 의미 있는 결과인 55.01%의 예측성공률을 얻었다.

  • PDF

Design and Implementation of a Text Mining System using Intelligent Miner (인텔리전트마이너를 이용한 텍스트마이닝 시스템의 설계 및 구현)

  • 최윤정;박승수
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.316-318
    • /
    • 2000
  • 데이터마이닝 기능은 문서의 구조화되지 않은 텍스트보다는 테이블과 일반적인 DB에 있는 구조화된 자료에 초점이 맞춰져 있다. 정보화의 과정속에서 많은 기업이나 조직들은 과거의 시스템을 DB로 구축하여 어느 정도 형태를 갖추게 되었지만, E-business, E-commerce가 활발해지면서 보유하고 있는 DB기반이 아닌 무작위의 새로운 데이터가 사용자들에 의해 생성되기도 한다. 본 논문에서는 이러한 텍스트 문서에 숨어있는 정보들을 발견하기 위한 텍스트마이닝 과정을 시나리오로 설정하고, 문서와 문서집합에 대해 분석도구를 적용하는 어플리케이션을 구현해 보았다. 대규모의 문서집합에 분석도구를 이용함으로써 빠른 문서처리가 가능하고 이는 사용자가 많은 양의 문서들을 다룰 때의 시간비용을 최소화시킬 수 있는 방법이 될 수 있다. 또한 마이닝과정을 통해 발견한 지식과 특징들을 기반으로 반구조화된 파일로 변환하여, 규칙발견, 데이터마이닝기법을 적용하여 의미있는 새로운 결론을 얻을 수 있을 것이다.

  • PDF

An Efficient Terminology Clustering Method Using Datamining Technique (데이타마이닝 기법을 이용한 효율적인 전문 용어 클러스터링)

  • 이정화;남상엽;문현정;우용태
    • Proceedings of the Korea Database Society Conference
    • /
    • /
    • pp.210-215
    • /
    • 2000
  • 최근 대량의 텍스트 문서로부터 의미 있는 패턴이나 연관 규칙을 발견하기 위한 텍스트마이닝 기법에 대한 연구가 활발히 전개되고 있다. 하지만 비정형 텍스트 문서로부터 추출된 용어의 수는 불규칙적이고 일반적인 용어가 많이 추출되는 관계로 일반적인 연관 규칙 탐사 방법을 사용하게 되면 무의미한 연관 규칙이 대량으로 생성되어 지식 정보를 효과적으로 검색하기 어렵다. 본 논문에서는 연관 규칙 탐사 기법을 이용하여 대량의 문서로부터 유용한 지식 정보를 찾기 위하여 의미적으로 연관된 전문 용어들끼리 클러스터링 하기 위한 방법을 제안하였다. 학술 논문을 대상으로 전문 용어를 추출하여 관련된 용어들끼리 클러스터를 구성하는 실험을 통하여 제안된 방법의 효율성을 보였다.

  • PDF

Comparison and Analysis of Domestic and Foreign Sports Brands Using Text Mining and Opinion Mining Analysis (텍스트 마이닝과 오피니언 마이닝 분석을 활용한 국내외 스포츠용품 브랜드 비교·분석 연구)

  • Kim, Jae-Hwan;Lee, Jae-Moon
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.6
    • /
    • pp.217-234
    • /
    • 2018
  • In this study, big data analysis was conducted for domestic and international sports goods brands. Text Mining, TF-IDF, Opinion Mining, interestity graph were conducted through the social matrix program Textom and the fashion data analysis platform MISP. In order to examine the recent recognition of sports brands, the period of study is limited to 1 year from January 1, 2017 to December 31, 2017. As a result of analysis, first, we could confirm the products representing each brand. Second, I could confirm the marketing that represents each brand. Third, the common words extracted from each brand were identified. Fourth, the emotions of positive and negative of each brand were confirmed.

Quantitative Text Mining for Social Science: Analysis of Immigrant in the Articles (사회과학을 위한 양적 텍스트 마이닝: 이주, 이민 키워드 논문 및 언론기사 분석)

  • Yi, Soo-Jeong;Choi, Doo-Young
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.5
    • /
    • pp.118-127
    • /
    • 2020
  • The paper introduces trends and methodological challenges of quantitative Korean text analysis by using the case studies of academic and news media articles on "migration" and "immigration" within the periods of 2017-2019. The quantitative text analysis based on natural language processing technology (NLP) and this became an essential tool for social science. It is a part of data science that converts documents into structured data and performs hypothesis discovery and verification as the data and visualize data. Furthermore, we examed the commonly applied social scientific statistical models of quantitative text analysis by using Natural Language Processing (NLP) with R programming and Quanteda.