• 제목, 요약, 키워드: 텍스트 마이닝

검색결과 669건 처리시간 0.055초

텍스트 마이닝의 개념과 응용

  • 조태호
    • 지식정보인프라
    • /
    • /
    • pp.76-85
    • /
    • 2001
  • 정보검색시스템은 물론 텍스트 데이터를 대상으로하는 지식관리 시스템, 문서관리시스템, 그리고 전자도서관등에서 텍스트 마이닝에 대한 기술에 대한 수요가 증가하고 있는 추세이다. 이 글에서는 텍스트 마이닝의 개념을 소개하고, 텍스트 마이닝의 주요기능, 그리고, 응용사례등을 기술할것이다. 텍스트 마이닝은 텍스트 데이터를 대상으로 하여 그들간의 암묵적인 정보를 추출하는 과정으로 정의할 수 있다. 데이터마이닝과 텍스트 마이닝의 차이는 대상이 텍스트 데이터와 수치 데이터하는 점에서 구분되고 텍스트 마이닝은 데이터 마이닝과 달리 이를 구조화시키는 과정이 필요하다. 텍스트마이닝에 있어서 구조화하는 과정에서 가장 보편적으로 사용되는것은 문서색인이다.

  • PDF

그래프 기반 텍스트 마이닝의 연구 동향 (Research Trends of Graph-Based Text Mining)

  • 장재영;한종빈;좌태빈
    • 한국정보처리학회:학술대회논문집
    • /
    • /
    • pp.1074-1077
    • /
    • 2013
  • 텍스트 마이닝은 비정형 데이터를 가정하므로 텍스트를 단순화된 모델로 표현하는 것이 필요하다. 현재까지 가장 많이 사용되고 있는 모델은 텍스트를 단순한 단어들의 집합으로 표현한 벡터공간 모델이다. 그러나 최근 들어 단어들의 의미적 관계까지 표현하기 위해 그래프를 이용한 텍스트 표현 모델을 많이 사용하고 있다. 본 논문에서는 텍스트 마이닝을 위한 기존의 연구 중에서 그래프에 기반한 텍스트 표현 모델의 방법들과 그들의 특징들을 주제별로 제시한다.

  • PDF

텍스트 마이닝을 위한 그래프 기반 텍스트 표현 모델의 연구 동향 (A Study on Research Trends of Graph-Based Text Representations for Text Mining)

  • 장재영
    • 한국인터넷방송통신학회논문지
    • /
    • v.13 no.5
    • /
    • pp.37-47
    • /
    • 2013
  • 텍스트 마이닝은 비정형화된 텍스트를 분석하여 그 안에 내재된 패턴, 추세, 분포 등의 고급정보들을 추출하는 분야이다. 텍스트 마이닝은 기본적으로 비정형 데이터를 가정하므로 텍스트를 단순화된 모델로 표현하는 것이 필요하다. 현재까지 가장 많이 사용되고 있는 모델은 텍스트를 단순한 단어들의 집합으로 표현한 벡터공간 모델이다. 그러나 최근 들어 단어들의 의미적 관계까지 표현하기 위해 그래프를 이용한 텍스트 표현 모델을 많이 사용하고 있다. 본 논문에서는 텍스트 마이닝을 위한 기존의 연구 중에서 그래프에 기반한 텍스트 표현 모델의 방법들과 그들의 특징들을 기술한다. 또한 그래프 기반 텍스트 마이닝의 향후 발전방향에 대해서도 논한다.

웹 컨텐츠의 분류를 위한 텍스트마이닝과 데이터마이닝의 통합 방법 연구 (Interplay of Text Mining and Data Mining for Classifying Web Contents)

  • 최윤정;박승수
    • 인지과학
    • /
    • v.13 no.3
    • /
    • pp.33-46
    • /
    • 2002
  • 최근 인터넷에는 기존의 데이터베이스 형태가 아닌 일정한 구조를 가지지 않았지만 상당한 잠재적 가치를 지니고 있는 텍스트 데이터들이 많이 생성되고 있다. 고객창구로서 활용되는 게시판이나 이메일, 검색엔진이 초기 수집한 데이터 둥은 이러한 비구조적 데이터의 좋은 예이다. 이러한 텍스트 문서의 분류를 위하여 각종 텍스트마이닝 도구가 개발되고 있으나, 이들은 대개 단순한 통계적 방법에 기반하고 있기 때문에 정확성이 떨어지고 좀 더 다양한 데이터마이닝 기법을 활용할 수 있는 방법이 요구되고 있다. 그러나, 정형화된 입력 데이터를 요구하는 데이터마이닝 기법을 텍스트에 직접 적용하기에는 많은 어려움이 있다. 본 연구에서는 이러한 문제를 해결하기 위하여 전처리 과정에서 텍스트마이닝을 수행하고 정제된 중간결과를 데이터마이닝으로 처리하여 텍스트마이닝에 피드백 시켜 정확성을 높이는 방법을 제안하고 구현하여 보았다. 그리고, 그 타당성을 검증하기 위하여 유해사이트의 웹 컨텐츠를 분류해내는 작업에 적용하여 보고 그 결과를 분석하여 보았다. 분석 결과, 제안방법은 기존의 텍스트마이닝만을 적용할 때에 비하여 오류율을 현저하게 줄일 수 있었다.

  • PDF

텍스트 마이닝 및 자동 추론 기반 생물학 지식 발견 시스템을 위한 확률 기반 필터링 (Probabilistic filtering for a biological knowledge discovery system with text mining and automatic inference)

  • 이희진;박종철
    • 한국컴퓨터정보학회논문지
    • /
    • v.17 no.2
    • /
    • pp.139-147
    • /
    • 2012
  • 본 논문에서는 텍스트 마이닝을 통해 생물학 문헌에서 분자 수준의 사건(event) 정보를 자동으로 추출하고, 이들 사건 정보를 기반으로 새로운 생물학 지식을 자동 추론하는 텍스트 마이닝 - 추론 통합 구조의 시스템을 다룬다. 이러한 통합 구조의 지식 발견 시스템은 미리 추출되어 데이터베이스에 등록된 정보만을 입력으로 사용하는 시스템들에 비하여 최신 정보를 보다 빨리 사용할 수 있고, 미리 정의된 형식 이외의 다양한 정보를 사용할 수 있다는 장점이 있다. 반면, 텍스트 마이닝 정보 추출 결과를 그대로 사용하기 때문에 텍스트 마이닝 모듈(module)의 성능에 따라 전체 시스템의 효용성이 크게 저하될 수도 있다는 문제가 있다. 본 논문에서는 확률 기반 필터링(filtering) 방법을 제안하여, 텍스트 마이닝 결과 중 양성 오류(false positive)를 효과적으로 제거함으로써 전체 지식 발견 시스템의 정확도 및 효용성을 높이고자 한다. 본 논문에서 제안한 확률 기반 필터링 방법은 기준(baseline) 방법으로 사용된 횟수 기반 필터링 방법보다 높은 성능을 보였다.

텍스트 마이닝을 활용한 대선 관련 SNS 분석 (SNS Analysis Related to Presidential Election Using Text Mining)

  • 권영우;정덕길
    • 한국정보통신학회:학술대회논문집
    • /
    • /
    • pp.361-363
    • /
    • 2017
  • 최근 소셜 미디어의 이용률이 폭발적으로 증가함에 따라, 방대한 데이터가 네트워크로 쏟아져 나오고 있다. 이들 데이터는 기존의 정형 데이터뿐만 아니라 이미지, 동영상 등의 비정형 데이터가 있으며, 이들을 포괄하여 빅데이터라고 불린다. 이러한 빅데이터는 오피니언 마이닝, 테스트 마이닝 등의 기술적인 분석 기법과 빅데이터 요약 및 효과적인 표현방법에 대한 시각화 기법에 대하여 활발한 연구가 이루어지고 있다. 이 논문은 인기 있는 사회연결망 서비스인 Twitter의 트윗을 수집하고, 빅데이터 분석 기법인 텍스트 마이닝을 활용하여 2017년 대선에 대하여 분석하였다. 또한 분석된 자료의 효과적인 전달을 위해 워드 클라우드 진행하였다. 이 논문을 위하여 인기 있는 SNS인 Twitter의 최근 7일간 트윗(tweet)을 수집하고 분석하였다.

  • PDF

빅데이터 환경에서 텍스트마이닝 기법을 활용한 공공문서 분류체계의 적용사례 연구 (Case Study on Public Document Classification System That Utilizes Text-Mining Technique in BigData Environment)

  • 심장섭;이강욱
    • 한국정보통신학회:학술대회논문집
    • /
    • /
    • pp.1085-1089
    • /
    • 2015
  • 과거의 텍스트마이닝기법은 텍스트 자체의 복잡성과 텍스트 내에 산재한 변수의 자유도 때문에 분석 알고리즘을 구현하는데 어려움이 있었다. 의미 있는 정보를 얻기 위하여 어렵게 알고리즘을 구현했다고 하더라도, 기계적으로 텍스트 분석에 소요되는 시간이 텍스트를 사람이 직접 읽어 분석 하는 것보다 많은 시간이 요구 되었다. 그러나 최근 하드웨어와 분석 알고리즘의 발전과 함께 빅데이터라는 기술이 등장하였으며, 앞에서 설명한 제약사항을 극복할 수 있게 되었고, 텍스트마이닝을 통한 분석이 현실세계에서 그 가치를 충분히 인정받고 있다. 만약, 텍스트의 탐색 수준에서 벗어나 마이닝을 통하여 분석이 가능하다면 텍스트 분석에 소비되는 인적, 물적 자원의 비용을 절감할 수 있기 때문에 공공분야에서 절실히 요구되는 창조적인 일에 더 많은 자원을 효과적으로 활용할 수 있을 것이다. 이에 본 논문에서는 인적 자원이 수작업으로 하는 공공분야 문서 분류의 결과값과 빅데이터 환경에서 텍스트마이닝기반의 문서내 단어 빈도수(TF-IDF)와 문서간 코사인 유사도(Cosine Similarity)를 활용한 공공분야 문서분류의 결과값을 비교하여 평가한다.

  • PDF

텍스트 마이닝을 통한 해외건설공사 입찰정보 분석 - 해외건설공사의 입찰자 질의(Bidder Inquiry) 정보를 대상으로 - (Construction Bid Data Analysis for Overseas Projects Based on Text Mining - Focusing on Overseas Construction Project's Bidder Inquiry)

  • 이지희;이준성;손정욱
    • 한국건설관리학회논문집
    • /
    • v.17 no.5
    • /
    • pp.89-96
    • /
    • 2016
  • 건설 프로젝트에서 생산되는 대부분의 데이터는 텍스트 기반의 비정형 데이터이다. 계약서, 시방서, RFi 등 수많은 텍스트 문서들을 효과적으로 분석하기 위해서는 텍스트 마이닝과 같은 비정형 텍스트 데이터 분석 방법이 필요하다. 이에 본 연구에서는 과거에 수행되었던 해외건설공사 프로젝트의 입찰 관련 문서들을 대상으로 텍스트 마이닝을 실시하였으며, 그 결과 빈출단어의 유형, 단어들 간의 연관관계, 문서들의 토픽 유형들에 대한 파악이 가능하였다. 본 연구는 텍스트 마이닝을 활용한 해외건설공사 입찰 정보 분석을 통해 비정형 텍스트 데이터를 효과적으로 분석할 수 있는 방안을 제시하였다는 점에서 의의가 있으며, 향후 관련 분야 연구를 확장시킬 수 있는 기반을 마련할 수 있을 것이라 기대한다.

자연어 처리 기반 텍스트 마이닝을 위한 한글 어간 추출 알고리즘 (Hangeul Stem Extraction Algorithm for Text Mining Based on Natural Language Processing)

  • 최기원;최성훈;조상현;김희철
    • 한국정보통신학회:학술대회논문집
    • /
    • /
    • pp.718-721
    • /
    • 2017
  • 텍스트 마이닝의 기반이 되는 자연어 처리는 언어의 종류에 따라 처리 방법이 다를 수 있다. 특히 타 언어에 비해 비교적 표현의 자유도가 높은 한글은 어미의 활용에 따라서 여러 가지 단어의 형태가 존재한다. 이처럼 다양한 형태로 굴절하는 단어에서 변화하지 않는 부분을 어간이라고 하며, 효과적인 텍스트 마이닝을 위해선 어간을 추출하여 다양한 형태의 단어들을 단일화하는 과정이 필수적이다. 따라서 본 논문에서는 한글문서의 효과적인 텍스트 마이닝을 위하여 한글 어간 추출 알고리즘을 제시한다.

  • PDF

단백질 상호작용 추출을 위한 확장성을 가진 텍스트 마이닝 기법 (An Extensible Text Mining Technique for the Extraction of Protein-Protein Interaction)

  • 이현철;여은주;강희영;조완섭;김학용;유재수
    • 한국정보과학회:학술대회논문집
    • /
    • /
    • pp.256-258
    • /
    • 2004
  • 단백질간의 상호작용에 대한 연구는 생물학적 프로세스를 이해하기 위해 중요한 부분이다. 이러한 단백질간의 상호작용에 대한 정보는 주로 생명과학 관련 연구논문에 존재하지만 컴퓨터로 자동으로 처리하여 상호작용에 관안 정보를 추출할 수 있기 위해서는 텍스트 마이닝 기술이 적용되어야 한다 바이오 텍스트 마이닝에서 대두되고 있는 중요한 쟁점은 대용량의 연구논문에서 필요한 정보를 어떻게 효율적으로 정확하게 추출할 것인가에 대한 내용이다. 또한, 관심이 있는 단백질의 종류나 관련성을 표시하는 문장내 패턴의 다양성을 수용하기 위하여 개발하는 시스템의 확장성을 높이는 것도 소프트웨어 공학적인 측면에서 중요한 이슈이다 이 논문의 목적은 생물학적 내용을 담고 있는 연구논문으로부터 단백질간의 상호작용을 추출하는 확장성을 가진 텍스트 마이닝 기법을 제안하는데 있다.

  • PDF