• Title, Summary, Keyword: 클러스터링

Search Result 2,160, Processing Time 0.041 seconds

Performance Analysis of Clustering and Non-clustering Methods in Flash Memory Environment (플래시 메모리 환경에서 클러스터링 방법과 비 클러스터링 방법의 성능 분석)

  • Bae, Duck-Ho;Chang, Ji-Woong;Kim, Sang-Wook
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.6
    • /
    • pp.599-603
    • /
    • 2008
  • Flash memory has its unique characteristics: the write operation is much more costly than the read operation and in-place updating is not allowed. In this paper, we analyze how these characteristics of flash memory affect the performance of clustering and non-clustering in record management, and shows that non-clustering is more suitable in flash memory environment, which does not hold in disk environment. Also, we discuss the problems of the existing non-clustering method, and identify considerable designing factors of record management method in flash memory environment.

Separation of Adjacent Targets using Range-Doppler Clustering Method (거리-도플러 클러스터링 방법을 사용한 인접한 표적들의 분리)

  • Kong, Young-Joo;Woo, Seon-Keol;Park, Sung-Ho;Ryu, Seong-Hyun;Kang, Yeon-Duk
    • The Journal of The Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.2
    • /
    • pp.67-73
    • /
    • 2020
  • The clustering algorithm is the grouping of similar objects. In radar system, it is mainly used to group adjacent hits using the CFAR algorithm results. However it is difficult to separate adjacent targets by a general clustering method. In this paper, we describe how to separate adjacent targets using double clustering method. First, we execute a range direction clustering. And we find the inflection point and separate it. Next, we execute a doppler direction clustering using range clustering results. This method makes the computation time less change even if the target increases by range-doppler clustering respectively.

Clustering of Web Document Exploiting with the Union of Term frequency and Co-link in Hypertext (단어빈도와 동시링크의 결합을 통한 웹 문서 클러스터링 성능 향상에 관한 연구)

  • Lee, Kyo-Woon;Lee, Won-hee;Park, Heum;Kim, Young-Gi;Kwon, Hyuk-Chul
    • Journal of Korean Library and Information Science Society
    • /
    • v.34 no.3
    • /
    • pp.211-229
    • /
    • 2003
  • In this paper, we have focused that the number of word in the web document affects definite clustering performance. Our experimental results have clearly shown the relationship between the amounts of word and its impact on clustering performance. We also have presented an algorithm that can be supplemented of the contrast portion through co-links frequency of web documents. Testing bench of this research is 1,449 web documents included on 'Natural science' category among the Naver Directory. We have clustered these objects by term-based clustering, link-based clustering, and hybrid clustering method, and compared the output results with originally allocated category of Naver directory.

  • PDF

User Oriented clustering of news articles using Tweets Heterogeneous Information Network (트위트 이형 정보 망을 이용한 뉴스 기사의 사용자 지향적 클러스터링)

  • Shoaib, Muhammad;Song, Wang-Cheol
    • Journal of Internet Computing and Services
    • /
    • v.14 no.6
    • /
    • pp.85-94
    • /
    • 2013
  • With the emergence of world wide web, in particular web 2.0 the rapidly growing amount of news articles has created a problem for users in selection of news articles according to their requirements. To overcome this problem different clustering mechanism has been proposed to broadly categorize news articles. However these techniques are totally machine oriented techniques and lack users' participation in the process of decision making for membership of clustering. In order to overcome the issue of zero-participation in the process of clustering news articles in this paper we have proposed a framework for clustering news articles by combining users' judgments that they post on twitter with the news articles to cluster the objects. We have employed twitter hash-tags for this purpose. Furthermore we have computed the credibility of users' based on frequency of retweets for their tweets in order to enhance the accuracy of the clustering membership function. In order to test performance of proposed methodology, we performed experiments on tweets messages tweeted during general election 2013 in Pakistan. Our results proved over claim that using users' output better outcome can be achieved then ordinary clustering algorithms.

An Empirical Study on the Measurement of Clustering and Trend Analysis among the Asian Container Ports Using the Variable Group Benchmarking and Categorical Variable Models (가변 그룹 벤치마킹 모형과 범주형 변수모형을 이용한 아시아 컨테이너항만의 클러스터링측정 및 추세분석에 관한 실증적 연구)

  • Park, Rokyung
    • Journal of Korea Port Economic Association
    • /
    • v.29 no.1
    • /
    • pp.143-175
    • /
    • 2013
  • The purpose of this paper is to show the clustering trend by using the variable group benchmarking(VGB) and categorical variable(CV) models for 38 Asian ports during 9 years(2001-2009) with 4 inputs(birth length, depth, total area, and number of crane) and 1 output(container TEU). The main empirical results of this paper are as follows. First, clustering results by using VGB show that Shanghai, Qingdao, and Ningbo ports took the core role for clustering. Second, CV analysis focusing on the container throughputs indicated that Singapore, Keelong, Dubai, and Kaosiung ports except Chinese ports are appeared as the center ports of clustering. Third, Aqaba, Dubai, Hongkong, Shanghai, Guangzhou, and Ningbo ports are recommended as the efficient ports for the target of clustering. Fourth, when the ports are classified by the regional location, Dubai, Khor Fakkan, Shanghai, Hongkong, Keelong, Ningbo, and Singapore ports are the core ports for clustering. On the whole, other ports located in Asia should be clustered to Dubai, Khor Fakkan, Shanghai, Hongkong, Ningbo, and Singapore ports. The policy implication of this paper is that Korean port policy planner should introduce the VGB model, and CV model for clustering among the international ports for enhancing the efficiency of inputs and outputs.

Clustering Method Using the Union Information of Term Frequency and Link in Hypertext (웹 문서의 단어정보와 링크정보 결합을 이용한 클러스터링 기법)

  • Lee, Won-Hee;Lee, Kyo-Woon;Park, Heum;Kim, Young-Ki;Kwon, Hyuck-Chul
    • Annual Conference on Human and Language Technology
    • /
    • /
    • pp.101-107
    • /
    • 2003
  • 최근의 웹 문서는 텍스트 위주의 구성이 아닌 이미지, 사운드, 동영상 등의 다양한 타입으로 구성되는 추세이다. 이에 따라 단순히 웹 문서 내의 단어 정보추출 만으로는 좋은 성능의 클러스터링을 기대하기 어렵다. 본 논문은 전통적인 문서 클러스터링 기법인 단어기반 클러스터링 기법의 취약점을 제시하고, 웹 문서간의 링크구조정보 중 동시인용 정보를 이용하여 웹 문서 클러스터링 성능향상의 가능성을 보이고자 한다. 실험에서는 네이버디렉토리 중 '자연과학' 범주에 포함된 문서를 대상으로 위의 두 가지 방식과 이 두 가지를 혼합한 단어-링크 혼합 클러스터링을 통해 기존의 방식보다 더 낳은 성능을 얻을 수 있었다.

  • PDF

Document clustering based on summarized document using K-means algorithm (요약 문서 기반 문서 클러스터링)

  • Oh, Hyung-Jin;Ko, Ji-Hyun;An, Dong-Un;Chung, Sung-Jong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • /
    • pp.589-592
    • /
    • 2002
  • 정보검색 시스템에서 문서 클러스터링 기법은 사용자 질의에 대하여 검색된 문서를 문서간의 관련도에 따라 클러스터로 구성하고 사용자에게 검색 결과로 보여주는 것이다. 본 논문에서는 사용자의 질의에 대하여 검색된 문서를 자동 문서 요약기를 통해 얻은 요약 문서와 문서 전문을 문서들간의 유사도를 기반으로 동적으로 클러스터링 한다. 구현한 시스템의 클러스터링 효과를 검증한 결과 검색된 문서 전문을 클러스터링 한 방식에 비해 요약 문서를 클러스터링 한 방식이 정확률 측면에서 더 나은 성능을 보였다.

  • PDF

User Query Expansion Through Keyword Similarity Ranking Algorithm Us ins Cluster ing Methods (클러스터링 기법을 이용한 키워드 유사도 순위화 알고리즘에 따른 사용자 질의 확장)

  • 이상훈;김기태
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.479-481
    • /
    • 2003
  • 본 논문에서는 여러 가지 클러스터링 기법들을 사용하여 키워드 유사도롤 순위화하여 사용자의 질의를 확장하는 기법을 제안한다. 클러스터링 기법에는 연관(Association) 클러스터링, 메트릭(Metric) 클러스터링, 스칼라(Scalar) 클러스터링 기법을 사용하고, 이들간의 가중치를 적절히 조절하여 검색 시스템을 만든다. 사용자의 질의가 주어졌을 때, 질의 키워드와 연관된 키워드들을 순위화 하여 사용자에게 보여주고, 사용자의 추가입력을 받아서 질의를 확장한다. 사용자가 적당한 질의어로 판단하여 확장된 질의로 검색을 수행할 때까지 이 과정을 반복한다. 실험에서 사용한 문헌집합은 Korea Herald의 2003년 1월과 2월의 경제 관련 기사들을 수집하여 사용하였고, 실험을 거쳐서 질의를 확장한 결과 만족할 만한 결과가 도출되었다.

  • PDF

Spatiat-temporal Declustering Method Using Proximity of Moving Object Data (이동체 데이터의 근접성을 이용한 디클러스터링 방법)

  • 홍은석;서영덕;홍봉희
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.767-769
    • /
    • 2003
  • 컴퓨터와 무선 통신 기술의 발달로 인하여 LBS(Location based Service)와 같은 새로운 이동체 관련 서비스가 생겨나고 있다. 이와 같은 서비스들은 이동체들이 일정 주기를 가지고 자신의 정보를 서버로 전송하는데 이는 많은 디스크 입출력을 요구하게 된다. 그러므로 이동체 데이터에 대하여 다중 디스크를 이용한 병렬 입출력이 요구되고 있다. 그러나 기존의 디클러스터링 방법은 시간 도메인을 고려하지 않거나 공간 관련성만을 고려하여 디클러스터링을 하므로, 하나의 디스크에 특정 이동체의 궤적이 집중 되는 문제점이 있다. 이 문제점은 디스크의 병목현상으로 인한 느린 응답시간과 낮은 처리율의 결과를 발생시킨다. 그러므로 이동 객체의 빠른 질의 처리를 위한 새로운 디클러스터링 기법이 필요하다. 이 논문에서는 다중 디스크 기반의 시스템에서 이동 객체에 대한 영역질의시 빠른 응답시간과 높은 처리율물 얻기 위하여 새로운 디클러스터링 기법을 제시한다. 이동체 데이터의 궤적 MBB중 공간 좌표로부터 Predefined Disk를 생성하고 PDT-Proximity를 이용하여 시간 도메인을 고려하는 방법이다. 위와 같이 이동 객체의 특성을 고려한 새로운 디클러스터링 방법으로 시스템의 성능을 향상시킬 수 있다.

  • PDF

Effective Time Interval Clustering Algorithm of Data Stream Environment (데이터 스트림 환경에서 임의 시간 구간에 대한 효율적 클러스터링 알고리즘)

  • Jang Joo-Hyun;Moon Yang-Sae;Roh Hi-Young
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.43-45
    • /
    • 2006
  • 최근에 데이터의 양이 방대하게 늘어남에 따라 이러한 데이터의 처리를 위한 여러 연구들이 진행되어지고 있다. 이 중에 데이터들 간의 군집 관계를 파악하기 위하여 사용되는 클러스터링에 관한 연구가 많이 수행되었는데, 이중 BIRCH는 대용량의 데이터를 처리하는데 있어서 적합한 모델로 제시되고 있다. 하지만 BIRCH는 데이터 스트림 환경에서 클러스터링은 효과적이지 못한 단점을 가지고 있다. 본 논문은 데이터 스트림 환경에서 과거의 임의 시간구간에 대한 클러스터링을 수행하는 방법을 제안한다. 이를 위하여 CF-트리를 일정 시간 마다 생성 및 저장하고 이를 이용하여 사용자가 원하는 시간 구간에 대해 동안의 클러스터링을 수행한다. 본 논문에서는 임의 시간구간에 대한 효율적인 클러스터링을 위해 기존의 CF-트리 노드 구조에 추가 데이터를 사용하는 $CF^{\delta}$-트리를 제안한다. 그리고 ${\delta}$에 대한 연구를 통해, 근사적 접근법을 제안하였다.

  • PDF