• Title, Summary, Keyword: 클러스터링

Search Result 2,160, Processing Time 0.043 seconds

Improving the G-K Clustering Performance using the Modified Mountain Method (변형된 Mountain 방법을 이용한 G-K 클러스터링 성능 개선)

  • Kim, Sung-Suk;Jeon, Byeong-Seok;Kim, Joo-Sik;Ryu, Jeong-Woong;Lhee, Chin-Gook
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.2546-2548
    • /
    • 2003
  • G-K 클러스터링이 가지는 우수한 클러스터 분류 성능에도 불구하고 데이터의 편중 및 분포 밀도에 의하여 클러스터링의 결과과 만족스럽지 못하는 경우가 발생한다. 제안된 방법에서는, G-K 클러스터링에서 데이터의 분포 및 밀도 등과 같은 다양한 조건에 대한 문제를 동시에 고려함으로써 클러스터링 결과를 개선한다. G-K 클러스터링에서 일부 파라미터의 수동적 파라미터 결정 방법을 Mountain 방법을 이용하여 능동적인 알고리즘으로 대치하여 클러스터 최적화 과정을 더욱 용이하게 한다. 이러한 클러스터링의 장점은 뉴로-퍼지 모델의 규칙 감소와 성능개선으로 나타나며 이를 시뮬레이션을 통하여 보이고자 한다.

  • PDF

Declustering Policies Using Spatial-Temporal Proximity in Moving Objects DataBases (이동체 데이터베이스에서 시공간 근접성을 고려한 디클러스터링 정책)

  • 홍은석;서영덕;홍봉희
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.118-120
    • /
    • 2003
  • 이동체 데이터베이스에서 이동체 궤적의 양은 엄청나게 많아서 기존의 단일 디스크 기반에서는 특정영역의 질의에 대한 빠른 응답과 처리율의 향상을 볼수 없다. 따라서 고성능 질의 처리를 위한 시스템의 성능 향상을 위해서는 병렬 처리 기법의 도입이 필요하다. 이런 병렬 처리 기법 중, 기존의 디클러스터링 방법에서는 시간이 지남에 따라 연속적으로 보고되는 이동체 특성을 고려하지 않고 있다. 그러므로 대용량 이동체 데이터에 대하여 고성능 질의 처리를 위한 새로운 디클러스터링 방법이 필요하다. 이 논문에서는 대용량 이동체 데이터베이스에 대한 고성능 질의 처리를 위한 새로운 디클러스터링 정책을 제시하였다. 이동체 데이터의 MBB중 공간 좌표의 근접성만을 고려하여 하나의 SemiAllocation Disk 값을 설정하고 그 값과 시간 도메인을 다시 고려하여 근접성을 계산함으로써 디클러스터링을 할 수 있다. 또한 디스크별 Load Balancing을 고려하여 보다 정확한 디클러스터링 효과를 가지도록 하였다. 이와 같이 이동체의 특성을 고려한 새로운 디클러스터링 정책으로 시스템의 성능을 향상 시킬 수 있다.

  • PDF

Topic based Web Document Clustering using Named Entities (개체명을 이용한 주제기반 웹 문서 클러스터링)

  • Sung, Ki-Youn;Yun, Bo-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.5
    • /
    • pp.29-36
    • /
    • 2010
  • Past clustering researches are focused on extraction of keyword for word similarity grouping. However, too many candidates to compare and compute bring high complexity, low speed and low accuracy. To overcome these weaknesses, this paper proposed a topical web document clustering model using not only keyword but also named entities such as person name, organization, location, and so on. By several experiments, we prove effects of our model compared with traditional model based on only keyword and analyze how different effects show according to characteristics of document collection.

A Clustering Method for Optimizing Spatial Locality (공간국부성을 최적화하는 클러스터링 방법)

  • 김홍기
    • Journal of KIISE:Databases
    • /
    • v.31 no.2
    • /
    • pp.83-90
    • /
    • 2004
  • In this paper, we study the CCD(Clustering with Circular Distance) and the COD(Clustering with Obstructed Distance) problems to be considered when objects are being clustered in a circularly search space and a search space with the presence of obstacles. We also propose a now clustering algorithm for clustering efficiently objects that the insertion or the deletion is occurring frequently in multi-dimensional search space. The distance function for solving the CCD and COD Problems is defined in the Proposed clustering algorithm. This algorithm is included a clustering method to create clusters that have a high spatial locality by minimum computation time.

Association-rule based ensemble clustering for adopting a prior knowledge (사전정보 활용을 위한 관련 규칙 기반의 Ensemble 클러스터링)

  • Go, Song;Kim, Dae-Won
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • /
    • pp.67-70
    • /
    • 2007
  • 본 논문은 클러스터링 문제에서 사전 정보에 대한 활용의 효율을 개선시킬 수 있는 방법을 제안한다. 클러스터링에서 사전 정보의 존재 시 이의 활용은 성능을 개선시킬 수 있는 계기가 될 수 있으므로 그의 활용 폭을 늘리기 위한 방법으로 다양한 사용 방법의 적용인 semi-supervised 클러스터링 앙상블을 제안한다. 사전 정보의 활용 방법의 방안으로써 association-rule의 개념을 접목하였다. 클러스터 수를 다르게 적용하더라도 패턴간의 유사도가 높으면 같은 그룹에 속할 확률은 높아진다. 다양한 초기화에 따른 클러스터의 동작은 사전 정보의 활용을 다양화 시키게 되며, 사전 정보에 충족하는 각각의 클러스터 결과를 제시한다. 결과를 총 취합하여 association-matrix를 형성하면 패턴간의 유사도를 얻을 수 있으며 결국 association-matrix를 통해 클러스터링 할 수 있는 방법을 제시한다.

  • PDF

Performance Comparison of Cell-based Clustering Method for Data Mining Applications (데이터마이닝을 위한 셀-기반 클러스터링 방법의 성능비교)

  • 진두석;장재우
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.124-126
    • /
    • 2001
  • 최근 데이터마이닝 응용분야에서 대용량의 고차원 데이터가 증가하고 있기 때문에 이를 효율적으로 처리할 수 있는 방법이 요구된다. 이를 위해 CLIQUE 방법과 셀-기반 클러스터링 방법을 선택하기 위해, 셀-기반 클러스터링 방법을 CLIQUE 방법 및 CLIQUE 방법에 근사정보(Approximation)를 결합한 방법과 성능 비교를 수행한다. 성능비교 결과, 셀-기반 클러스터링 방법이 데이터 클러스터링 및 데이터 검색시간에서 가장 우수한 성능을 보이며, 정확율은 CLIQUE 방법에 비해 다소 뒤떨어지거나 전체적인 효율성에서 매우 우수한 성능을 보인다.

  • PDF

Hierarchical Overlapping Document Clustering for Efficient Categorization of Semantic Information (의미정보의 효율적인 분류를 위한 계층적 중복 문서 클러스터링)

  • 강동혁;주길홍;이원석
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.175-177
    • /
    • 2001
  • 기존의 문서 클러스터링 알고리즘은 모든 문서가 각각 하나의 클러스터에만 할당되도록 설계되어 문서에 여러 개의 주제가 포함되어 있을지라도 문서는 유사도 비교에 의해 오직 하나의 플러스터에 포함된다는 단점이 있다. 본 연구에서는 이러한 문서 플러스터링 방법의 한계를 파악하기 위해 문서가 여러 개의 클러스터에 포함될 수 있는 계층적 중복 문서 클러스터링을 제안한다. 또한, 문서 클러스터링의 정확도를 높이기 위해서 불용어 제거 알고리즘을 이용해 불용어를 제거하여 클러스터링에 사용되는 키워드를 선별하고, 단어가중치 산출을 위한 TF*NHDF 공식을 제안한다.

  • PDF

An Analysis of the Hierarchical Agglomerative Clustering based on various Compound Noun Indexing Method (복합명사 분리 색인 방법이 문서 클러스터링에 미치는 영향 분석)

  • 양명석;최성필
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.697-699
    • /
    • 2002
  • 본 논문에서는 복합명사에 대한 색인 방법을 다각적으로 적용하여 계층적 결함 문서 클러스터링 시스템의 결과를 분석하고자 한다. 우선 한글 색인 엔진과 HAC(Hierarchical Agglumerative Clustering) 엔진에 대해서 설명하고 한글 색인엔진에서 제공되는 세가지 복합명사 분석 모드에 대해서 설명한다. 또한 구현된 클러스터링 엔진의 특징과 속도 향상을 위한 기법 등을 설명한다. 실험에서는 다양한 요소를 가지고 클러스터링된 문서 집합에 대한 분석 결과를 보인다. 실험 결과에 대한 분석에서 복합명사에 대한 색인 방법이 문서 클러스터링의 결과에 직접적인 영향을 준다는 것을 보여준다.

  • PDF

Similarity-based Image Clustering Method using Hierarchical Clustering Technique (다단계 클러스터링 기법을 이용한 이미지 클러스터링 기법에 관한 연구)

  • 한정규;김석대;황수찬
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.707-709
    • /
    • 2003
  • 본 논문에서는 유사도(similarity) 기반 이미지 클러스터링 기법에 대하여 논하고자 한다. 비트맵 이미지의 특징을 추출하고 이러한 특징에 기반한 유사도 측정 함수들을 소개하고 이미지 클러스터링 알고리즘과 구현을 통한 실험 예제들에 대해서 설명한다. 이 실험에서 우리는 유사도에 따라 이미지들이 계층적(Hierarchical)으로 집단화 되는 계층적 클러스터링 알고리즘을 사용하였다. 이미지의 특징 표현을 위해서는 HSV 기반의 히스토그램을 이용하였다. 본 논문에서 제안한 기법의 실험 결과는 이미지 데이터베이스에서 유사한 이미지를 검색하는데 높은 효율성이 있는 것을 보여준다.

  • PDF

E-Commerce에서의 퍼지 클러스터링 알고리즘을 적용한 추천 시스템

  • Lyou, Hae-Ri;Kim, Moon-Hyun
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • /
    • pp.410-415
    • /
    • 2003
  • 인터넷의 발전으로 전 세계적으로 다양한 인터넷 서비스들이 점차 확대되고 있으며, 특히 수익을 내는 방법으로서의 인터넷 전자상거래는 큰 비중을 차지하고 있다. 이에 수많은 사이트, 쇼핑몰은 상품과 고객들의 수많은 데이터를 데이터베이스 모듈로 관리하고 있다. 이렇게 고객에게 맞는 상품을 추천하기 위해 효율적으로 클러스터링 하는 방법이 요구된다. 이에 본 논문에서는 여러 클러스터링 방법 중에서 퍼지 이론을 기반으로 개선된 클러스터링 알고리즘을 이용하여 상품을 추천하고자 한다 이 방법은 클러스터의 개수가 한정되어 있는 기존의 방법에 클러스터의 유사도에 따른 유사성을 부여함으로써 더 세밀하고 정확한 클러스터링을 가능케 하여 이에 따른 개인의 성향에 맞게 개인화된 상품을 추천하는 시스템을 설계하고자 한다.

  • PDF