• Title, Summary, Keyword: 클러스터링

Search Result 2,160, Processing Time 0.04 seconds

A Clustering Method of Web Navigation Pattern Using the Hyperplane (하이퍼플래인을 이용한 웹 방문 패턴에 대한 사용자 클러스터링)

  • 이해각;주영옥
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • /
    • pp.608-611
    • /
    • 2004
  • 사용자 웹 방문 패턴 발견으로써의 사용자 클러스터링은 웹 사이트를 이용하는 사용자들의 취향과 행동방식을 얻어내는데 매우 유용하다. 또한 이러한 정보는 웹 개인화나 웹 사이트를 재구성 하는 데 필수적 이 다. 본 논문에서 사용자 웹 방문 패스를 클러스터링 하기 위한 시간적으로 효율적이며, 패스 특성을 보다 정확하게 표현하여 클러스터링 할 수 있는 알고리즘이 제안되며, 제안된 알고리즘은 패스 간의 유사도 측정을 통한 클러스터링, 하이퍼플랜을 이용한 K-평균 클러스터링의 2단계 과정으로 이루어져 있다.

  • PDF

A Study of Incremental Clustering Technique based on Ontology (온톨로지 기반 점진적 클러스터링 기법에 관한 연구)

  • Kim Je-Min;Park Young-Tack
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.643-645
    • /
    • 2005
  • 클러스터링은 무질서한 데이터들의 상호 연관 관계를 정의하고, 이를 통하여 보다 체계적으로 데이터를 군집화하는 것이다. 클러스터링을 적용한 웹 서비스 시스템은 비슷한 내용을 묶어 제공하기 때문에 사용자는 보다 효율적으로 정보를 제공받을 수 있다. 시멘틱 웹의 기반이 되는 온톨로지는 클러스터링을 위한 완벽한 입력 데이터를 제공한다. 본 논문은 온톨로지를 기반의 메타 데이터를 클러스터링 하기 위한 기법을 제안한다. 본 논문의 목적은 온톨로지 기반의 메타 데이터들의 유사성을 측정하기 위한 평가함수를 정의하고, 이러한 평가함수를 적용한 계층적 클러스터링 알고리즘을 연구하는 것이다.

  • PDF

A Study on Time Shifted Time Series Data Clustering (시차를 고려한 시계열 클러스터링 방법에 관한 연구)

  • Jeong, Jae-Yong;Lee, Ju-Hong;Song, Jae-Won
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • /
    • pp.382-384
    • /
    • 2020
  • 데이터 클러스터링은 데이터의 숨겨진 패턴을 찾아낸다. 시계열 데이터에서 시차가 존재하는 데이터를 클러스터링하는 것은 데이터의 미래 패턴을 찾아내기 위해서 사용한다. 데이터 클러스터링을 수행하기 위한 여러 가지 Metric이 존재하지만, 시계열 데이터의 노이즈로 인해서 클러스터링을 수행하는 Metric을 설정하는데 제약이 존재한다. 본 논문은 기존 시계열 데이터가 가지고 있는 노이즈를 PIP 기법을 사용하여 제거하고, 노이즈가 없는 시계열 데이터를 클러스터링하기 위한 효율적인 새로운 Metric을 제안한다.

K-means Clustering Method according to Documentation Numbers (문서 수에 따른 가중치를 적용한 K-means 문서 클러스터링)

  • Cho, Cea-Sung;An, Dong-Un;Jeong, Sung-Jong;Lee, Shin-Won
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • /
    • pp.345-348
    • /
    • 2003
  • 본 논문에서는 이 문서 클러스터링 방법 중 계층적 방법인 Kmeans 클러스터링 알고리즘을 이용하여 문서를 클러스터링 하고자 한다 기존의 Kmeans 클러스터링 알고리즘은 문서의 수가 많을 경우 하나의 클러스터링에 너무 많은 문서들이 할당되는 문제점이 있다. 이 치우침을 완화하고자 각 클러스터링에 할당된 문서 수에 따라서 문서에 가중치를 부여한 후 다시 클러스터링을 하는 방법을 제안하였다. 실험 결과는 정확률, 재현율을 결합한 조화 평균(F-measure)를 사용하여 평가하였으며 기존 알고리즘보다 9%이상의 성능 향상을 나타냈다.

  • PDF

Declustering of Moving object database based on Inertia (관성을 이용한 이동체 데이터베이스의 디클러스터링)

  • 서영덕;김진덕;홍봉희
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.734-736
    • /
    • 2003
  • 이동체의 궤적을 저장하는 대용량 이동체 DB는 대규모의 이동 객체 궤적의 효과적인 검색을 위하여 디클러스터링 기법을 통한 객체 궤적의 분산 배치가 필수적으로 요구된다. 그러나 기존 공간 객체의 디클러스터링 기법은 이동체의 특성과 시간 영역에 대한 고려 없이 디클러스터링을 수행한다. 또한, 단순히 현재 시점에서 색인 노드의 공간 관련성안을 판단의 근거로 삼고 있어서 효과적인 디클러스터링이 되지 않는 단점이 있다. 이러한 이유로 이동체 데이터베이스에서 빠른 질의 수행을 위한 디클러스터링 기법이 필요하다. 이 논문에서는 이동체 궤적에 대한 질의 시 빠른 응답 시간을 얻고 전제 시스템의 처리율 향상을 위한 디클러스터링 방법을 제시한다. 제시되는 방법은 이동체의 진행 방향에 대하여 이동 시간에 의한 이동 궤적의 관성을 정의하고, 이를 색인의 노드 단위로 확장한 노드의 관성을 정의한다. 정의된 관성을 이용하여 이동체 궤적의 노드가 저장될 디스크를 정의함으로써 궤적 데이터의 디클러스터링을 효과적으로 수행할 수 있다.

  • PDF

Fuzzy Clustering Algorithm to Predict Cancer Class Using Gene Expression Data (유전자 발현 데이터를 이용한 암의 클래스 예측을 위한 퍼지 클러스터링 알고리즘)

  • 원홍희;유시호;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.757-759
    • /
    • 2003
  • 암의 치료법은 같은 종류의 암이라 해도 그 하부 클래스에 따라 매우 다르기 때문에 암의 클래스를 예측하는 것은 그 정확한 치료를 위하여 매우 중요하다. 유전자 발현 데이터를 이용한 암의 분류에 있어 기존의 연구들은 각 데이터를 하나의 클러스터에 소속시키는 하드 분할(hard partition)에 의한 분할 방식을 사용하는 하드 클러스터링을 사용하였다. 하지만 일반적으로 유전자 발현 암 데이터와 같은 실세계의 데이터는 쉽게 나뉘어지기 힘들거나 클러스터 간의 경계가 분명하지 않기 때문에 하드 클러스터링 기법은 주어진 데이터의 성질을 손실시킬 수 있는데 반해, 퍼지 클러스터링 기법은 각 데이터가 소속 정도에 따라 여러 개의 클러스터에 속할 수 있도록 분할하기 때문에 이러한 손실을 최소화할 수 있다. 따라서 본 논문에서는 퍼지 클러스터링의 대표적인 방법인 fuzzy c-means 클러스터링을 적용하여 암의 클래스를 예측하고, 다양한 하드 클러스터링 방법과 비교함으로써 퍼지 클러스터링의 성능을 검증하였다.

  • PDF

An Improving Method of Efficiency for Word Clustering Based on Language Model (언어모델 기반 단어 클러스터링 알고리즘의 효율성 향상 기법)

  • Park, Sang-Woo;Kim, Youngtae;Kang, Dong-Min;Ra, Dongyul
    • Annual Conference on Human and Language Technology
    • /
    • /
    • pp.55-60
    • /
    • 2011
  • 단어 클러스터링 (word clustering) 또는 군집화는 자연어처리에서 데이터 부족 문제로 인하여 단어 간의 의미관계와 관련된 정보를 사용하기 어렵게 만드는 문제에 대처할 수 있는 중요한 기술이다. 단어 클러스터링과 관련하여 알려진 가장 대표적인 기법으로는 클래스-기반 n-gram 언어모델의 개발을 위하여 제안된 Brown 단어 클러스터링 기법이다. 그러나 Brown 클러스터링 기법을 이용하는데 있어서 부딪치는 가장 큰 문제점은 시간과 공간적인 면에서 자원 소요량이 너무 방대하다는 점이다. 본 연구는 이 클러스터링 기법의 효율성을 개선하는 실험을 수행하였다. 실험 결과 가장 단순한(naive) 접근에 비하여 약 7.9배 이상의 속도 향상을 이룰 수 있음을 관찰하였다.

  • PDF

Link-Based Clustering in Blogosphere (블로그 공간에서의 링크 기반 클러스터링 방안)

  • Song, Suk-Soon;Yoon, Seok-Ho;Kim, Sang-Wook
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • /
    • pp.372-374
    • /
    • 2009
  • 본 논문에서는 블로그 공간에 존재하는 블로거와 포스트들을 링크 기반 클러스터링을 통해 클러스터링하고자 한다. 먼저 기존 링크 기반 클러스터링 방안 중에서 블로거와 포스트들을 클러스터링하는데 가장 적합한 LinkClus를 선택한다. LinkClus를 블로그 공간에 적용하기 위해서 블로거와 포스트를 각각 하나의 타입으로, 블로거와 포스트 사이의 액션을 링크로 사상한다. 정확한 클러스터링을 위하여 클러스터의 대상을 여러 주제에 관심을 가지는 블로거 대신 하나의 주제만을 나타내는 폴더로 한다. 또한 노이즈의 발생 가능성을 높이는 링크가 아주 적은 블로거와 포스트를 클러스터링 과정에서 제외 시킨다. 실험을 통하여 제안하는 방안을 이용한 클러스터링 결과가 내용적으로도 유사한지 검증한다.

  • PDF

Analysis of Gene Expression Data Using Gath-Geva Algorithm (Gath-Geva 알고리즘을 이용한 유전자 발현 데이터의 분석)

  • 박한샘;유시호;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.253-255
    • /
    • 2004
  • 다량의 유전자 발현 정보를 담고 있는 DNA 마이크로어레이 기술의 발달로 인해 대량의 생물정보를 한번의 실험을 통해 분석할 수 있게 되었다. 유전자 발현 데이터를 분석하는 방법 중 하나인 클러스터링은 비슷한 기능을 가진 유전자들을 그룹별로 묶어서 그룹 레의 유전자들의 기능을 밝히거나 미지의 유전자를 분석하는데 이용되고 있다 본 논문에서는 유전자 발현 데이터를 클러스터링 하여 그로부터 유전 정보를 찾아내기 위한 방법으로 GG (Gath-Geva) 알고리즘을 제시한다. 퍼지 클러스터링 알고리즘중 하나인 GG 알고리즘은 대표적인 퍼지 클러스터링 방법인 퍼지 c-means 와 GK (Gustafson-Kessel) 알고리즘을 개선한 것으로. 차원이 크고 분포가 애매하여 클러스터링이 어려운 유전자 발현 데이터의 클러스터링에 적합한 알고리즘이다. 혈청(Serum) 유전자 데이터와 효모(Yeast) 세포주기 데이터를 CG 알고리즘 이용해 클러스터링 해 보고, 그 결과를 퍼지 c-means 알고리즘, GK알고리즘과 비교해 본 결과, GG 알고리즘이 유전자 발현 데이터의 클러스터링에 더 적합함을 확인하였다.

  • PDF

A Hierarchy of Kernel PCM-Generated Clusters (계층적인 구조를 이루는 KPCM 알고리즘)

  • Koo Yang-Hyup;Choi Byung-ln;Rhee Chung-Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • /
    • pp.83-86
    • /
    • 2005
  • 커널함수를 이용한 클러스터링 방법은 일반적인 목적함수 기반의 클러스터링 방법에 비해 고리모양과 같은 복잡한 모양의 데이터를 클러스터링할 때 훨씬 효율적이다. 그러나, 커널기반의 클러스터링 방법은 거리함수를 계산하기 위하여 커널함수를 연산해야 하기 때문에 클러스터 수가 많아지면, 일반적인 목적함수 기반의 클러스터링 방법에 비하여 계산량이 급격히 증가하는 단점이 있다. 따라서, 본 논문에서는 이러한 단점을 개선하기 위하여 커널기반의 클러스터링 기법에 계층적인 클러스터링 모델을 적용한다.

  • PDF