• Title, Summary, Keyword: 클러스터링

Search Result 2,160, Processing Time 0.04 seconds

Object and Cell Clustering Algorithms of the Fixed Grid File (고정 그리드 파일의 객체 및 셀 클러스터링 알고리즘)

  • Jo, Dae-Su;Yu, Jin-Yeong;Hong, Bong-Hui
    • Journal of KIISE:Databases
    • /
    • v.28 no.1
    • /
    • pp.69-85
    • /
    • 2001
  • 공간 데이터베이스에서 효율적으로 공간 질의를 처리하기 위해서는 클러스터링을 통해서 이스크 접근 비용을 줄이는 것이 필요하다. 이 논문은 공간 지역성에 기반을 둔 여러 가지 클러스터링 알고리즘을 제안하고 실험을 통해 제안한 클러스터링 알고리즘의 성능을 평가하였다. 이 논문에서 제안하는 클러스터링 알고리즘은 객체 클러스터링 알고리즘과 셀 클러스터링 알고리즘으로 나뉜다. 객체 클러스터링 알고리즘은 정규 준할 공간 색인 구조에서 영역 분할 선과 겹치는 객체들의 저장 위치를 결정하는데 사용된다. 셀 클러스터링 알고리즘은 클러스터를 만들기 위해 정규 분할된 영역들을 그룹화하는데 사용된다. 실험결과 객체 클러스터링 알고리즘에서는 객체간의 거리를 이용한 경우에 대체로 좋은 성능을 보였지만, 버퍼 크기가 커지거나 데이터가 희박한 영역의 질의에 있어서는 알고리즘 별로 성능의 차이는 거의 없었다. 셀 클러스터링 알고리즘에 대한 실험에서는 이 논문에서 제안한 클러스터링 알고리즘은 N-순서화 기법에 의한 클러스터링 알고리즘에 비해 우수한 성능을 보였다. 특히 중복 참조도를 이용한 경우와 셀의 무게 중심간 거리를 이용한 방법이 가장 우수하였다.

  • PDF

A Post Web Document Clustering Algorithm (후처리 웹 문서 클러스터링 알고리즘)

  • Im, Yeong-Hui
    • The KIPS Transactions:PartB
    • /
    • v.9B no.1
    • /
    • pp.7-16
    • /
    • 2002
  • The Post-clustering algorithms, which cluster the results of Web search engine, have several different requirements from conventional clustering algorithms. In this paper, we propose the new post-clustering algorithm satisfying those requirements as many as possible. The proposed Concept ART is the form of combining the concept vector that have several advantages in document clustering with Fuzzy ART known as real-time clustering algorithms. Moreover we show that it is applicable to general-purpose clustering as well as post-clustering

Color image segmentation based on clustering using color space distance and neighborhood relation among pixels (픽셀간의 칼라공간에서의 거리와 이웃관계를 고려하는 클러스터링을 통한 칼라영상 분할)

  • 김황수;이화정
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.532-534
    • /
    • 1998
  • 본 논문에서는 칼라공간상의 거리와 이웃정보를 이용한 클러스터링을 통한 칼라영상 분할 방법을 제안한다. 영상의 픽셀들을 이웃관계를 유지하여 칼라공간으로 매핑한다. 칼라공간상에서 이웃하는 픽셀들을 클러스터링하여 영상의 세그먼트들을 찾는다. 클러스터링 방법으로서 인력을 모방하는 클러스터링(gravitational clustering)을 사용하였다. 이 방법으로 클러스터의 중심값과 클러스터 수를 미리 정해주지 않아도 자동적으로 결정할 수 있는 장점이 있다. gravitational 클러스터링에서 찾은 클러스터 수를 가지고 다른 클러스터링 방법에 입력으로 주어 결과를 비교해 본다. 본 논문에서는 이웃관계를 따라 클러스터링하는 것이 정확한 경계선을 찾는데 효과적임을 보여준다.

  • PDF

K-means Clustering Method according to Documentation Numbers (문서 수에 따른 가중치를 적용한 K-means 문서 클러스터링)

  • 조시성;안동언;정성종;이신원
    • Proceedings of the IEEK Conference
    • /
    • /
    • pp.1557-1560
    • /
    • 2003
  • 본 논문에서는 이 문서 클러스터링 방법 중 계층적 방법인 Kmeans 클러스터링 알고리즘을 이용하여 문서를 클러스터링 하고자 한다. 기존의 Kmeans 클러스터링 알고리즘은 문서의 수가 많을 경우 하나의 클러스터링에 너무 많은 문서들이 할당되는 문제점이 있다. 이 치우침을 완화하고자 각 클러스터링에 할당된 문서 수에 따라서 문서에 가중치를 부여한 후 다시 클러스터링을 하는 방법을 제안하였다. 실험 결과는 정확률, 재현율을 결합한 조화 평균(F-measure)을 사용하여 평가하였으며 기존 알고리즘보다 9%이상의 성능 향상을 나타냈다.

  • PDF

Fuzzy Clustering Algorithm for Web-mining (웹마이닝을 위한 퍼지 클러스터링 알고리즘)

  • Lim, Young-Hee;Song, Ji-Young;Park, Dai-Hee
    • Journal of Korean Institute of Intelligent Systems
    • /
    • v.12 no.3
    • /
    • pp.219-227
    • /
    • 2002
  • The post-clustering algorithms, which cluster the result of Web search engine, have some different requirements from conventional clustering algorithms. In this paper, we propose the new post-clustering algorithm satisfying those of requirements as many as possible. The proposed fuzzy Concept ART is the form of combining the concept vector having several advantages in document clustering with fuzzy ART known as real time clustering algorithms on the basis of fuzzy set theory. Moreover we show that it can be applicable to general-purpose clustering as well as post clustering.

Within-Cluster-Discriminative Fuzzy Clustering (클러스터 내 분별 오류 최소화를 위한 퍼지 클러스터링)

  • Heo, Gyeongyong;Lee, Soojong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • /
    • pp.269-270
    • /
    • 2013
  • 퍼지 클러스터링은 유사도가 높은 데이터 포인트들이 동일한 클러스터에 포함되도록 하는 대표적인 비교사 학습 방법 중 하나이다. 이 논문에서는 클러스터링을 분류기의 전처리 단계에서 활용할 수 있도록 클러스터 내에서 분류 오류가 최소가 될 수 있도록 클러스터를 생성할 수 있는 새로운 퍼지 클러스터링 방법을 제안한다. 제안하는 클러스터링은 특징 벡터와 함께 클래스 라벨을 활용하므로 분류기와 결합하여 사용할 경우 기존 분류기와 함께 사용할 경우 보다 우수한 성능을 기대할 수 있다.

  • PDF

Grid Cell Based Spatial Clustering Method (그리드 셀 기반 공간 클러스터링 방법)

  • 이동규;정정수;문상호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.10-12
    • /
    • 2001
  • 대용량의 공간 데이터베이스로부터 임시적이고 유용한 지식을 자동적으로 추출하는 공간데이터 마이닝은 데이터양의 급격히 증가하면서 필요성이 더욱 증대되고 있다. 공간데이타 마이닝에서 데이터를 분석하여 유사한 그룹으로 분류하는 것은 중요한 분야이며, 이를 위해서는 공간 클러스터링 과정이 먼저 수행되어야 한다. 이러한 공간 클러스터링에서 가장 중요한 점은 클러스터링에 드는 비용의 감소와 점 공간객체에 한정된 클러스터링이 아닌 선 및 다각형 객체들의 클러스터링도 가능해야 한다. 본 본문은 이를 위하여 공간지역성을 보장하는 대표적인 공간분할 방법인 그리드 셀을 이용한다. 기존의 클러스터링에서 사용되는 객체들 간의 거리 계산을 인접한 그리드 셀들 간의 관계 연산으로 대체시키는 것이 핵심아이디어이다. 이 방법은 기존 클러스터링에서 객체들 간의 거리 계산으로 인한 비용을 현저하게 줄일 수 있고, 선 및 다각형 객체들의 클러스터링도 가능하게 하는 장점이 있다.

  • PDF

Color Image Segmentation based on Clustering using Color Space Distance and Neighborhood Relation Among Pixels (픽셀간의 칼라공간에서의 거리와 이웃관계를 고려하는 클러스터링을 통한 칼라영상 분할)

  • Lee, Hwa-Jeong;Kim, Hwang-Su
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.10
    • /
    • pp.1038-1045
    • /
    • 2000
  • 본 논문에서는 칼라공간상의 거리와 이웃정보를 이용한 클러스터링을 통한 칼라영상 분할 방법을 제안한다. 칼라영상의 한 픽셀은 칼라정보(R.G.B)와 위치정보(x.y)를 가진다. 대개의 칼라공간에서의 클러스터링방법은 픽셀을 (R,G,B)공간으로 변환후 (R,G,B)공간상의 분포만을 이용하지만 여기서는(R,G,B)와 (x.y)모두를 사용하여 클러스터링함으로 영상의 세그먼트들을 찾는다. 클러스터링 방법으로서 인력을 모방하는 중력 클러스터링(gravitational clustering)을 사용하였다. 이 방법은 클러스터의 중심값과 클러스터 수를 미리 정해주지 않아도 자동적으로 결정할 수 있는 장점이 있다. 중력 클러스터링에서 찾은 클러스터 수를 가지고 다른 클러스터링 방법(K-means)에 입력으로 주어 결과를 비교해 본다. 본 논문에서는 이웃관계를 따라 클러스터링하는 것이 정확한 경계선을 찾는데 효과적임을 보여준다.

  • PDF

A Non-linear Variant of Global Clustering Using Kernel Methods (커널을 이용한 전역 클러스터링의 비선형화)

  • Heo, Gyeong-Yong;Kim, Seong-Hoon;Woo, Young-Woon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.4
    • /
    • pp.11-18
    • /
    • 2010
  • Fuzzy c-means (FCM) is a simple but efficient clustering algorithm using the concept of a fuzzy set that has been proved to be useful in many areas. There are, however, several well known problems with FCM, such as sensitivity to initialization, sensitivity to outliers, and limitation to convex clusters. In this paper, global fuzzy c-means (G-FCM) and kernel fuzzy c-means (K-FCM) are combined to form a non-linear variant of G-FCM, called kernel global fuzzy c-means (KG-FCM). G-FCM is a variant of FCM that uses an incremental seed selection method and is effective in alleviating sensitivity to initialization. There are several approaches to reduce the influence of noise and accommodate non-convex clusters, and K-FCM is one of them. K-FCM is used in this paper because it can easily be extended with different kernels. By combining G-FCM and K-FCM, KG-FCM can resolve the shortcomings mentioned above. The usefulness of the proposed method is demonstrated by experiments using artificial and real world data sets.

Document Clustering Using Reference Titles (인용문헌 표제를 이용한 문헌 클러스터링에 관한 연구)

  • Choi, Sang-Hee
    • Journal of the Korean Society for information Management
    • /
    • v.27 no.2
    • /
    • pp.241-252
    • /
    • 2010
  • Titles have been regarded as having effective clustering features, but they sometimes fail to represent the topic of a document and result in poorly generated document clusters. This study aims to improve the performance of document clustering with titles by suggesting titles in the citation bibliography as a clustering feature. Titles of original literature, titles in the citation bibliography, and an aggregation of both titles were adapted to measure the performance of clustering. Each feature was combined with three hierarchical clustering methods, within group average linkage, complete linkage, and Ward's method in the clustering experiment. The best practice case of this experiment was clustering document with features from both titles by within-groups average method.