• Title, Summary, Keyword: 지연된 오프로딩

Search Result 7, Processing Time 0.025 seconds

Delayed offloading scheme for IoT tasks considering opportunistic fog computing environment (기회적 포그 컴퓨팅 환경을 고려한 IoT 테스크의 지연된 오프로딩 제공 방안)

  • Kyung, Yeunwoong
    • Journal of The Korea Internet of Things Society
    • /
    • v.6 no.4
    • /
    • pp.89-92
    • /
    • 2020
  • According to the various IoT(Internet of Things) services, there have been lots of task offloading researches for IoT devices. Since there are service response delay and core network load issues in conventional cloud computing based offloadings, fog computing based offloading has been focused whose location is close to the IoT devices. However, even in the fog computing architecture, the load can be concentrated on the for computing node when the number of requests increase. To solve this problem, the opportunistic fog computing concept which offloads task to available computing resources such as cars and drones is introduced. In previous fog and opportunistic fog node researches, the offloading is performed immediately whenever the service request occurs. This means that the service requests can be offloaded to the opportunistic fog nodes only while they are available. However, if the service response delay requirement is satisfied, there is no need to offload the request immediately. In addition, the load can be distributed by making the best use of the opportunistic fog nodes. Therefore, this paper proposes a delayed offloading scheme to satisfy the response delay requirements and offload the request to the opportunistic fog nodes as efficiently as possible.

Method for Mobile node in Cloud Computing Environments (클라우드 컴퓨팅 환경에서 이동노드 지원을 위한 기법)

  • Kim, Kiyoung;Yeom, Saehun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.2
    • /
    • pp.67-75
    • /
    • 2014
  • In this paper, we proposed offloading delay method which determines effectively offloading timing by measuring of handoff delay and offloading time at mobile node side in mobile environment. The propose method measures each of handoff delay and offloading time and making decision of proper offloading timing on mobile node side. Therefore, it is possible to support cloud computing without changing previous implemented cloud computing structure for fixed node in a mobile environment. We compare the energy consumption of server and node to analyze efficiency of proposed method by using existing method of energy consumption measurement. Simulation results shows the reducing energy consumption more than previous method and operation time similar to previous method.

An Offloading Decision Scheme Considering the Scheduling Latency of the Cloud in Real-time Applications (실시간 응용에서 클라우드의 스케줄링 지연 시간을 고려한 오프로딩 결정 기법)

  • Min, Hong;Jung, Jinman;Kim, Bongjae;Heo, Junyoung
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.6
    • /
    • pp.392-396
    • /
    • 2017
  • Although mobile device-related technologies have developed rapidly, many problems arising from resource constraints have not been solved. Computation offloading that uses resources of cloud servers over the Internet was proposed to overcome physical limitations, and many studies have been conducted in terms of energy saving. However, completing tasks within their deadlines is more important than saving energy in real-time applications. In this paper, we proposed an offloading decision scheme considering the scheduling latency in the cloud to support real-time applications. The proposed scheme can improve the reliability of real-time tasks by comparing the estimated laxity of offloading a task with the estimated laxity of executing a task in a mobile device and selecting a more effective way to satisfy the task's deadline.

Service Mobility Support Scheme in SDN-based Fog Computing Environment (SDN 기반 Fog Computing 환경에서 서비스 이동성 제공 방안)

  • Kyung, Yeun-Woong;Kim, Tae-Kook
    • Journal of The Korea Internet of Things Society
    • /
    • v.6 no.3
    • /
    • pp.39-44
    • /
    • 2020
  • In this paper, we propose a SDN-based fog computing service mobility support scheme. Fog computing architecture has been attracted because it enables task offloading services to IoT(Internet of Things) devices which has limited computing and power resources. However, since static as well as mobile IoT devices are candidate service targets for the fog computing service, the efficient task offloading scheme considering the mobility should be required. Especially for the IoT services which need low-latency response, the new connection and task offloading delay with the new fog computing node after handover can occur QoS(Quality of Service) degradation. Therefore, this paper proposes an efficient service mobility support scheme which considers both task migration and flow rule pre-installations. Task migration allows for the service connectivity when the fog computing node needs to be changed. In addition, the flow rule pre-installations into the forwarding nodes along the path after handover enables to reduce the connection delay and service interruption time.

Service Image Placement Mechanism Based on the Logical Fog Network (논리적 포그 네트워크 기반의 서비스 이미지 배치 기법)

  • Choi, Jonghwa;Ahn, Sanghyun
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.11
    • /
    • pp.250-255
    • /
    • 2020
  • For the resolution of the latency problem of the cloud center-based cloud computing, fog computing was proposed that allows end devices to offload computations to nearby fog nodes. In the fog computing, virtualized service images are placed on fog nodes and, if service images are placed close to end devices, the duplicate service image placement problem may occur. Therefore, in this paper, we propose a service image placement mechanism based on the logical fog network that reduces duplicate service images by considering the pattern of collected service requests. For the performance evaluation of the proposed mechanism, through simulations, we compare ours with the on-demand mechanism placing a service image upon the receipt of a service request. We consider the performance factors like the number of service images, the number of non-accommodated service requests, and the network cost.

5G 망에서의 Network Slicing 요구사항 및 제공 구조

  • Kim, Sang-Hun
    • Information and Communications Magazine
    • /
    • v.33 no.6
    • /
    • pp.9-17
    • /
    • 2016
  • 본고에서는 5G 망에서의 서비스 요구사항을 만족하기 위한 구조로서 Network Slicing 구조를 제안하고 세부 적용방안을 기술한다. 이를 위해 5G 서비스를 우선 정의하고 그에 따른 서비스 요구사항을 도출한 후, 이러한 요구사항과 관련해 현재 망의 문제점에 대해 기술하고 망 개선을 위한 기술 요구사항을 정립한다. 특히, 5G에서의 중요성이 높아질 것으로 전망되고 있는 'Network Slicing'의 필요성 및 개념에 대해 서술한다. Network Slicing에 대한 제조사들의 솔루션 동향, 3GPP 등 단체의 표준화 동향, APN 방식의 P-LTE/DECOR/RAN Slicing 등 관련 기술의 발전 동향을 포함한 5G Network Slicing 주요 기술 동향에 대해서 알아본다. 또한, Slice의 관리 및 BSS/OSS등과의 연계를 위한 통신사업자 입장에서의 플랫폼 요구사항을 정리한다. 5G Network Slicing을 충족하기 위한 주요 기술로 C/U plane 분리구조, 범용 서버를 활용한 NFV/SDN, Edge 기반의 분산된 수평적 네트워크, 데이터 오프로딩 및 지연시간 절감을 위한 Edge Computing 등을 들 수 있고 효율적인 자원 관리를 위한 Orchestration 등에 대해서도 알아본다. 이를 기반으로 하여 사업자 입장에서 5G Core Network 기술을 선도함은 물론이고 향후, 조기 상용화를 위한 진화 방향을 제시하고자 한다.

Access Delay Characteristics of Wi-Fi Network According to User Increase in Subway Section (지하철 구간에서 이용객 증가에 따른 Wi-Fi 접속 지연 특성)

  • Koh, Seoung-chon;Choi, Kyu-Hyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3455-3461
    • /
    • 2015
  • LTE and Wi-Fi networks provide wireless communication services to passengers in subway where the number of network access fluctuates according to passenger movement. While the number of network access increase, LTE can provide stable communication service but Wi-Fi suffers temporal access delay to network. This paper analyzes the increase in access delay of Wi-Fi network according to increasing user in subway section by making mathematical modeling of Wi-Fi network and simulation study. The access delay characteristics of Wi-Fi network is measured along an subway line and the results are compared to the theoretical study. These results can be applied to the connection method to build an efficient network structure between LTE and Wi-Fi interworking network and the future introduction of LTE-R.