The study on combining multiple classifiers in the field of pattern recognition has mainly focused on how to combine multiple classifiers, but it has gradually turned to the study on how to select multiple classifiers from a classifier pool recently. Actually, the performance of multiple classifier system depends on the selected classifiers as well as the combination method of classifiers. Therefore, it is necessary to select a classifier set showing good performance, and an approach based on information theory has been tried to select the classifier set. In this paper, a classifier set candidate is made by the selection of classifiers, on the basis of mutual information between classifiers, and the classifier set candidate is compared with the other classifier sets chosen by the different selection methods in experiments.