• Title, Summary, Keyword: 인공신경망

Search Result 1,512, Processing Time 0.041 seconds

Study on Precipitation Prediction Technique using Artificial Neural Network (인공신경망을 이용한 강우예측기법에 관한 연구)

  • Yeo, Woon-Ki;Jee, Hong-Kee;Lee, Soon-Tak
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • /
    • pp.1412-1416
    • /
    • 2009
  • 최근의 극심한 기상이변으로 인하여 발생되는 이상호우의 예측에 관한 사항은 치수 이수는 물론 방재의 측면에서도 역시 매우 중요한 관심사로 부각되고 있다. 강우를 예측하기 위해 많은 방법들이 사용되고 있으나 강우의 메커니즘은 매우 복잡하여 수문순환과정에서 가장 예측하기 힘든 요소이며, 추계학적 예측모형이나 확정론적 예측모형 모두에 있어 상당한 불확실성을 내포하고 있다. 기상예측모형 등을 이용하여 강우예측에 대한 정도를 높여가고는 있으나 많은 수문학적 모형에서 요구하는 시공간적으로 정도가 높은 강우를 예측하기에는 힘들다. 인공신경망은 과거자료의 입 출력 패턴에서 정보를 추출하여 지식으로 보유하고, 이를 근거로 새로운 상황에 대한 해답을 제시하도록 하는 인공지능분야의 학습기법으로 인간이 과거의 경험과 훈련으로 지식을 축적하듯이 시스템의 입 출력에 의하여 연결강도를 최적화함으로서 모형의 구조를 스스로 조직화하기 때문에 모형의 구조에 적합한 최적 매개변수를 추정할 수 있다. 따라서 정확한 예측이 어려운 강우사상을 과거의 자료로부터 신경망의 수학적 알고리즘을 통해 강우의 예측에 적용할 수 있을 것이다. 따라서 본 연구에서는 이러한 인공신경망의 기법 중 오류 역전파 알고리즘을 통하여 과거의 강우사상들을 입 출력 자료로 이용하여 인공신경망을 학습시켜 강우의 예측에 대한 정도를 높이도록 하였다.

  • PDF

The design of capacitor-based self-powered artificial neural networks devices (커패시터 기반 자가발전 인공 신경망 디바이스 설계)

  • Kim, Yongjoo;Kim, Taeho
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.3
    • /
    • pp.361-367
    • /
    • 2020
  • This paper proposes the battery-less ultra-low-power self-powered cooperating artificial neural networks device for embedded and IoT systems. This device can work without extraneous power supplying and can cooperate with other neuromorphic devices to build large-scale neural networks. This device has energy harvesting modules, so that can build a self-powered system and be used everywhere without space constraints for power supplying.

Neural Network-based Signal Processing Technique for Structural Damage Detection (신경망에 기초한 계측신호처리를 이용한 구조물의 손상감지)

  • Lee, Jungwhee;Kim, Sungkon;Kim, Namhee;Chang, Sung-Pil
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • /
    • pp.267-273
    • /
    • 2002
  • 이 논문은 계측신호 분석에 의한 교량구조물의 건전성 모니터링에 관한 것으로, 2 단계 인공신경망을 사용한 구조물의 손상발견 기법에 대하여 제안하고 있다. 첫 번째 단계의 인공신경망은 구조물로부터 측정된 가속도 신호를 입력으로 사용하여 각각의 가속도계로부터 측정된 신호의 변형정도를 나타내는 신호변형지수를 출력하도록 설계되었다. 손상의 발생 여부를 나타내는 첫 번째 단계 인공신경망의 출력값은 다시 두 번째 단계 인공신경망의 입력으로 사용되어 손상의 위치와 정도를 파악하는데 쓰여진다. 모형교량을 사용한 실험으로부터 얻어진 가속도신호를 사용하여 제안된 방법의 타당성을 확인하였으며, 항후 실 교량에 대한 실험을 통하여 현장 적용의 가능성을 확인할 계획이다.

  • PDF

KOSPI 200예측에 있어서 개입시계열모형과 인공신경망모형의 성과비교

  • 양유모;하은호;오경주
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • /
    • pp.177-182
    • /
    • 2003
  • 많은 경제 시계열 자료 중에서 주가는 국내외 경제상황은 물론 정부정책 등 시장 외적인 영향에 가장 민감하게 반응한다. 하지만, 지금까지의 주가예측에 있어서는 이러한 외부의 영향, 즉 개입(Intervention)이 발생했을 때 주가의 변동에 능동적으로 대처하는 모형이 부재하였다. 실제로 이러한 개입사실을 예측모형에 반영하지 않는다면, 주가예측 있어 그 예측력을 따진다는 것은 무의미하다고 판단된다. 따라서, 개입시점을 발견하고, 이 개입효과를 측정하여 이를 모형에 반영한다면 좋은 예측결과를 얻을 수 있을 것이다. 이 연구에서는 이상점 탐지절차를 이용하여 개입 시점을 발견하고 개입의 효과가 개입시점에만 영향을 주는 모형과 효과가 일정기간 지속되는 모형으로 두 개의 개입시계열모형을 구축하고, 이러한 두 모형의 예측성과와 인공신경망모형을 이용한 예측성과를 비교하였다. 초단기예측(개입 직후 예측)에 있어서 개입의 효과가 지속되는 경우에는 개입시계열이 인공신경망보다 좋을 결과 를 나타내긴 했지만 그 차이는 크지 않았으며, 개입의 효과가 시점에만 영향을 준 경우에는 인공신경망의 결과가 더 우수한 것으로 나타났다. 단기예측(개입 후 20 일후의 예측)에 있어서는 개입 효과의 지속여부에 상관없이 인공신경망이 개입시계열모형보다 우수한 것으로 나타났다.

  • PDF

Prediction of Water Quality in Large Rivers with Tributary Input using Artificial Neural Network Model (인공신경망 모델을 이용한 지천유입이 있는 대하천의 수질예측)

  • Seo, Il Won;Yun, Se Hun;Jung, Sung Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • /
    • pp.45-45
    • /
    • 2018
  • 오염물의 혼합거동을 해석하기 위해 물리기반 모델을 이용하는 경우 모델을 구축하고 운용하는데 많은 시간과 재정이 소요되며 현장검증을 통한 검증이 반드시 필요하다. 하지만 데이터 기반 모델의 경우 축적된 데이터만으로도 예측을 수행할 수 있으며 물리기반모델에 비해 결정해야할 입력인자가 적어 모델운용이 용이하다는 장점이 있다. 다양한 데이터 모델 중 인공신경망(ANN) 모델은 데이터가 가지는 불확실성 및 비정상성, 복잡한 상호관련성에 효과적으로 대응할 수 있는 모델로 수자원 및 환경 분야에서 자주 사용되고 있다. 본 연구에서는 인공신경망 모델을 이용하여 지천유입이 있는 대하천의 수질인자 (pH, 전기전도도, DO, chl-a)를 예측하였다. 다른 데이터기반 모델과 같이 인공신경망 모델 또한 수집된 데이터 질에 크게 영향을 받으며, 내부 입력인자의 선택이 모델의 예측 결과에 큰 영향을 미친다. 이러한 인공신경망 모델의 특성을 바탕으로 예측모형의 정확도를 향상하기 위해서는 크게 데이터 처리부분과 모델구축 부분에서의 접근이 필요하다. 본 연구에서는 데이터 처리 과정에서 연구대상지점의 각각의 수질인자가 가지는 분포 특성을 유지하기 위해 층화표츨추출법을 이용하여 데이터를 구성하였다. 모델의 구축 과정에서는 초기가중치 값의 영향을 줄이기 위해 앙상블기법을 사용하였으며, 좀 더 견고하고 정확한 결과를 예측하기 위해 탄력적 역전파알고리즘을 추가하였다. 추가적으로 합류 후 본류의 미 계측지역 수질 예측 정확도 향상을 위해 본류의 수질인자뿐만 아니라 지류의 수질인자를 입력자료로 사용하여 모의를 수행하였다. 또한 동일 구간에서 수행한 현장추적자실험 자료를 이용하여 수질인자의 분포특성을 비교, 검증하였다. 개발된 모델을 이용하여 낙동강과 금호강 합류부 하류의 수질인자를 예측한 결과 지류의 수질인자를 입력자료로 추가한 경우 예측의 정확도가 증가하였으며, 현장실험 자료를 통해 밝혀진 오염물의 거동현상을 인공신경망 모델로도 동일하게 재현하는 것으로 나타났다. 본 연구에서 제안한 인공신경모델을 이용한다면 물리기반 수치모델을 대체하여 지천으로 유입된 오염물의 거동을 정확하고 효율적으로 파악할 수 있을 것이다.

  • PDF

A Study on Operation of Reservoir using Artificial Neural Networks (인공신경망을 통한 댐 운영 문제 연구)

  • Kim, Seok Hyeon;Hwang, SoonHo;Jun, SangMin;Kim, Kyeung;Kang, Moon Seong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • /
    • pp.403-403
    • /
    • 2019
  • 수자원을 효율적으로 관리하고 사용하는 것은 확보한 수자원을 확보한 목표에 맞게 시,공간적으로 적절하게 분배 시키는 것이다. 따라서 저수지 운영의 최종 목표는 댐 건설 목적에 따라 확보된 물을 유입량, 저수량, 용수 수요등을 감안하여 댐 운영 목표에 맞게 최적으로 적절한 양의 물을 적절한 시기에 방류하는 것이다.(손덕환, 2004) 현재 댐군의 운영방법은 확정론적인 방법과 추계학적인 방법이 주로 이용되고 있으나 본 연구에서는 최근 연구가 많이 이루어지고 있는 인공신경망을 적용하여 운영방법으로써의 적용성을 검토하고자한다. 연구대상지로는 수력발전소가 포함된 한강의 충주 다목적댐을 선정하였다. 인공신경망은 입력층에서 출력층사이에 은닉층이 존재하는 다중신경망을 활용하였으며 출력층은 방류량으로 설정하여 발전방류와 수문방류를 구분하여 설정하였다. 방류량 결정을 위한 입력층 구성은 선행 연구들을 참고하여 예측 유입량, 현재 수위, 발전량, 용수 수요량 등을 설정하여 입력층으로 구성하였다. 학습기간의 방류량 자료를 학습하고 검정기간을 통해 실제 이루어진 방류량과 모의된 방류량의 차이를 비교, 분석하여 댐 운영방법으로써의 인공신경망의 적용성을 검토하고자하였다.

  • PDF

A Efficient Rule Extraction Method Using Hidden Unit Clarification in Trained Neural Network (인공 신경망에서 은닉 유닛 명확화를 이용한 효율적인 규칙추출 방법)

  • Lee, Hurn-joo;Kim, Hyeoncheol
    • The Journal of Korean Association of Computer Education
    • /
    • v.21 no.1
    • /
    • pp.51-58
    • /
    • 2018
  • Recently artificial neural networks have shown excellent performance in various fields. However, there is a problem that it is difficult for a person to understand what is the knowledge that artificial neural network trained. One of the methods to solve these problems is an algorithm for extracting rules from trained neural network. In this paper, we extracted rules from artificial neural networks using ordered-attribute search(OAS) algorithm, which is one of the methods of extracting rules, and analyzed result to improve extracted rules. As a result, we have found that the distribution of output values of the hidden layer unit affects the accuracy of rules extracted by using OAS algorithm, and it is suggested that efficient rules can be extracted by binarizing hidden layer output values using hidden unit clarification.

Development of Defect Classification Program by Wavelet Transform and Neural Network and Its Application to AE Signal Deu to Welding Defect (웨이블릿 변환과 인공신경망을 이용한 결함분류 프로그램 개발과 용접부 결함 AE 신호에의 적용 연구)

  • Kim, Seong-Hoon;Lee, Kang-Yong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.1
    • /
    • pp.54-61
    • /
    • 2001
  • A software package to classify acoustic emission (AE) signals using the wavelet transform and the neural network was developed Both of the continuous and the discrete wavelet transforms are considered, and the error back-propagation neural network is adopted as m artificial neural network algorithm. The signals acquired during the 3-point bending test of specimens which have artificial defects on weld zone are used for the classification of the defects. Features are extracted from the time-frequency plane which is the result of the wavelet transform of signals, and the neural network classifier is tamed using the extracted features to classify the signals. It has been shown that the developed software package is useful to classify AE signals. The difference between the classification results by the continuous and the discrete wavelet transforms is also discussed.

  • PDF

Feasibility of Artificial Neural Network Model Application for Evaluation of Undrained Shear Strength from Piezocone Measurements (피에조콘을 이용한 점토의 비배수전단강도 추정에의 인공신경망 이론 적용)

  • 김영상
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.287-298
    • /
    • 2003
  • The feasibility of using neural networks to model the complex relationship between piezocone measurements and the undrained shear strength of clays has been investigated. A three layered back propagation neural network model was developed based on actual undrained shear strengths, which were obtained from the isotrpoically and anisotrpoically consolidated triaxial compression test(CIUC and CAUC), and piezocone measurements compiled from various locations around the world. It was validated by comparing model predictions with measured values about new piezocone data, which were not previously employed during development of model. Performance of the neural network model was compared with conventional empirical method, direct correlation method, and theoretical method. It was found that the neural network model is not only capable of inferring a complex relationship between piezocone measurements and the undrained shear strength of clays but also gives a more precise and reliable undrained shear strength than theoretical and empirical approaches. Furthermore, neural network model has a possibility to be a generalized relationship between piezocone measurements and undrained shear strength over the various places and countries, while the present empirical correlations present the site specific relationship.

Automatic Generation of a Configured Song with Hierarchical Artificial Neural Networks (계층적 인공신경망을 이용한 구성을 갖춘 곡의 자동생성)

  • Kim, Kyung-Hwan;Jung, Sung Hoon
    • Journal of Digital Contents Society
    • /
    • v.18 no.4
    • /
    • pp.641-647
    • /
    • 2017
  • In this paper, we propose a method to automatically generate a configured song with melodies composed of front/middle/last parts by using hierarchical artificial neural networks in automatic composition. In the first layer, an artificial neural network is used to learn an existing song or a random melody and outputs a song after performing rhythm post-processing. In the second layer, the melody created by the artificial neural network in the first layer is learned by three artificial neural networks of front/middle/last parts in the second layer in order to make a configured song. In the artificial neural network of the second layer, we applied a method to generate repeatability using measure identity in order to make song with repeatability and after that the song is completed after rhythm, chord, tonality post-processing. It was confirmed from experiments that our proposed method produced configured songs well.