• 제목/요약/키워드: 유한요소법

검색결과 4,251건 처리시간 0.121초

유한요소법과 기초공학

  • 김용석
    • 전산구조공학
    • /
    • 제4권2호
    • /
    • pp.5-8
    • /
    • 1991
  • 유한요소법의 도입과 Computer 산업의 발전으로 그동안 정확한 이론적 해석에만 의존하던 많은 구조해석 문제들이 유한요소법을 이용하여 근사해를 구할 수 있게 되었다. 그러나 유한요소법 S/W에 대한 정확한 이해와 구조에 대한 개념을 정확히 이해하지 못한채 범용 유한요소법 S/W를 이용함으로써 구조분야에 오랜 경험을 가진 사람들 마저도 자신도 모르는 사이에 종종 오류를 범하는 사례를 볼 수 있기 때문에 유한요소법 S/W 이용에 유의해야 한다. 유한요소법의 발전은 그동안 구조해석상 많은 어려움을 겪고 있던 기초공학 분야에도 많은 도움을 주어 요즘 이 분야에서의 유한요소법 이용이 날로 가속화되고 있다. 이런 시점에서 기초공학 분야에 필요한 유한요소법의 기본적인 개념을 소개하고자 한다.

  • PDF

파랑하중의 산정을 위한 유한요소법 (Finite Element Method for Evaluation of Wave Forces)

  • 박우선
    • 전산구조공학
    • /
    • 제3권2호
    • /
    • pp.9-12
    • /
    • 1990
  • 유한요소법은 구조물의 변위 또는 응력 등을 해석하기 위한 구조해석 분야에서 뿐만 아니라, 유체역학, 열역학 및 전자기학 등 각종 공학문제의 수학적 모형에 대하여 구해진 미분방정식을 푸는 기법으로 널리 사용되고 있다. 특히, 컴퓨터 기술의 급속한 발달로 인한 유한요소법의 적용범위는 더욱 확장되고 있다. 본 고는 유한요소법이 타 공학문제, 특히 유체에 관련된 문제에서 어떻게 이용되고 있는가를 소개하려 한다. 구체적으로, 해양구조물의 설계에 있어서 선결되어야 할 주요사항인 파랑하중 산정문제를 예로 들어, 유한요소법을 이용한 이의 수식화과정을 간략히 설명하였다.

  • PDF

뼈대구조물의 최적설계

  • 류연선
    • 전산구조공학
    • /
    • 제7권3호
    • /
    • pp.37-40
    • /
    • 1994
  • 현재까지 구조해석에는 유한요소법이 가장 널리 사용되고 있으므로, 이 글에서도 유한요소법이 사용됨을 전제로 모든 과정을 논의한다. 유한요소라이브러리에서 뼈대구조물에 가장 적합한 것은 보요소(beam element)라 할 수 있다. 따라서 여기에서는 보요소를 주로 이용하는 유한요소법에 근거를 두고 뼈대구조물의 최적화 설계과정을 기술하기로 한다.

  • PDF

강소성 유한요소법에 의한 비정상상태 금속 성형 해석에서 형상갱신기법에 관한 연구

  • 최영;여홍태;허관도
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 춘계학술대회 논문요약집
    • /
    • pp.58-58
    • /
    • 2004
  • 현재 금속 성형공정에 대한 해석법으로 강소성 유한요소법이 널리 이용되고 있다. 강소성 유한요소법에서는 주어진 시간에서 속도장을 얻고 가공물 형상을 시간증분 만큼 갱신하는 과정을 반복하여 비정상상태 금속성형공정의 해석한다. 일반적인 강소성 유한요소법은 형상갱신(Geometry update) 과정에서 오일러법(Euler method)을 이용한다. 오일러법에서는 시간증분의 크기가 해의 정밀도에 중요한 인자이다. 충분히 정밀한 해를 얻기 위해, 작은 시간증분을 이용하여 비정상상태 금속성형공정을 해석함으로써 해석시간이 많이 걸리는 단점이 있으며 형상갱신에 따른 가공물 체적손실(Volume loss)이 발생한다.(중략)

  • PDF

일반유한유소법을 이용한 응력확대계수 계산 (Computation of Stress Intensity Factors using Generalized Finite Element Method)

  • 홍원택;이필승
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2010년도 정기 학술대회
    • /
    • pp.52-55
    • /
    • 2010
  • 본 논문에서는 일반유한요소법(Generalized Finite Element Method)를 이용하여 응력확대계수를 계산하는 방법을 소개한다. 기존의 유한요소법을 사용하여 응력확대계수를 계산하기위해서는 J-integral 방법 등을 이용한 후처리 과정이 필수적으로 요구된다. 뿐만 아니라 균열선단 근방에서의 응력을 기술하기 위해서는 세밀한 요소망(mesh)이 요구된다. 후처리 과정과 균열선단 근방에서의 요소망은 수치적 오류를 발생시키고 이는 정확한 응력확대계수를 얻는데 어려움을 준다. 일반유한요소법은 근사함수를 요소망의 영향 없이 추가해서 사용할 수 있는 장점을 가지고 있지만, 활용성 측면에서 기존의 유한요소법보다 복잡하여 실용성이 떨어진다. 본 논문에서는 일반유한요소법의 장점을 충분히 살려 균열선단근방에서는 응력을 모델링하여 근사함수로 사용하고 균열선단에서 거리가 먼 곳은 기존의 유한요소를 써서 계산을 하였다. 특별한 후처리 과정(Post processing) 없이 비교적 정확한 응력확대계수를 손쉽게 얻을 수 있다. 일반유한요소법을 이용한 제시된 방법론이 타당함을 수치 예제를 통하여 확인하였다.

  • PDF

전계해석을 위한 유한 요소법의 활용

  • 정상진
    • 전기의세계
    • /
    • 제36권10호
    • /
    • pp.713-721
    • /
    • 1987
  • 본고에서는 유한요소법(FEM:Finite Element Method)을 활용하여 이방법의 장점인 복수법, 시변전계 및 직류이온장의 해석기법을 소개하고 그약점인 개방된 영역의 전계해석을 위한 경계이완법의 설명과 계산예, 그리고 유한요소법에 의한 전계계산법의 문제점과 향후전망을 언급코자 한다.

  • PDF

파워흐름유한요소법에 의한 중고주파수 영역에서 단순 평판의 진동 해석 (Analysis of Vibration of a Simple Plate In a Medium-to-High Frequency Range With Power Flow Finite Element Method)

  • 서성훈;홍석윤;길현권;허영
    • 한국전산구조공학회논문집
    • /
    • 제16권2호
    • /
    • pp.125-131
    • /
    • 2003
  • 본 논문에서는 중고주파수 영역에서 진동하는 단순평판의 진동을 해석하기 위하여 파워흐름유한요소법을 적용하였다. 파워흐름해석법에서 주어지는 진동 에너지지배방정식의 해를 구하기 위한 수치해석 도구로써 유한요소법을 활용하였다. 이러한 파워흐름유한요소법을 적용하여 중고주파수 영역에서 진동하는 단순평판의 진동 변위와 진동인텐시티 분포를 구하였다. 또한 수치해 결과를 엄밀해와 유한요소법에 의한 근사해와 비교함으로써, 파워흐름유한요소법은 중고주파수 영역에서 진동 변위 및 진동 인텐시티를 예측하기 위하여 효과적으로 적용될 수 있음을 보였다.

다층탄성해석과 유한요소법을 사용한 골재기층의 거동분석 (Analysis of Aggregate Base Behavior Using Layered Elastic and Finite Element Methods)

  • 김성희
    • 한국도로학회논문집
    • /
    • 제11권1호
    • /
    • pp.195-201
    • /
    • 2009
  • 이 논문에서는 다층탄성해석과 유한요소법을 사용하여 도로설계를 위한 도로내 주요 변형률을 계산하여 유사한 결과치를 양산하는 경우를 비교 분석하였다. 비록 유한요소법이 보다 나은 모델이라는 것이 입증되긴 했지만, 다층탄성해석 프로그램이 간편성으로 인해 여전히 도로설계를 위해 많이 사용되어 지고 있으므로 다층탄성해석 프로그램을 사용한 주요 변형률의 예측이 시급한 실정이다. 이 연구에서는 KENLAYER프로그램을 사용하여, 비선형 이방성 기층거동을 고려한 유한요소법을 사용했을 때 얻어지는 도로내 주요 변형을 예측할 수 있는 분석기법이 소개된다.

  • PDF

무한요소(Infinite Elements)를 이용한 기초공학해석

  • 양신추
    • 전산구조공학
    • /
    • 제4권2호
    • /
    • pp.9-12
    • /
    • 1991
  • 공학문제에 있어서, 해석적으로 접근할 수 없었던 많은 경우의 문제들이 유한요소법(Finite Element Methods)의 정형화된 모형화 및 해석과정을 통하여 쉽게 접근되어질 수 있었다. 최근 보다 효율적인 요소개발과 컴퓨터 기술의 발달로 유한요소법은 더욱 효과적인 해석 수단이 되어가고 있다. 그러나 지반공학 문제와 같은 무한영역 문제를 유한요소법으로 해석할 경우, 매우 큰 영역을 모형화하기 위하여 많은 수의 요소가 요구되며 이에 따른 자유도(Degree of Freedom) 수의 증가로 많은 계산시간을 요구하게 된다. 본 고는 무한영역 문제를 효과적으로 모형화하기 위하여 연구, 개발되어진 무한요소(Infinite Element)에 대하여 소개하려 한다. 무한요소의 기본개념과 강성행렬의 형성방법을 보인 후, 기초공학 문제를 예로 하여 이의 적용방법을 간략하게 설명하였다.

  • PDF