• Title, Summary, Keyword: 유체감쇠

Search Result 192, Processing Time 0.042 seconds

New Dynamic Model of Large-Scale 20-Ton MR Fluid Damper (대용량 20톤 MR 유체 감쇠기의 새로운 동적 모델)

  • ;;Yang, Guangqiang
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • /
    • pp.141-148
    • /
    • 2002
  • MR 유체 감쇠기는 구조물의 진동을 감소시키기 위한 가장 유망하고 새로운 제진 (制振) 장치 중 하나이다. 이 장치는 기계적인 단순성, 높은 동적 범위, 적은 전력 요구량, 커다란 감쇠 능력, 강인성 등의 장점을 가지고 있기 때문에, 토목 구조 시스템의 내진(耐震) 및 내풍(耐風) 성능을 향상시키는데 매우 유용하다. 많은 연구자들이 MR 유체 감쇠기의 유사-정적 모델을 연구했지만 그 모델이 감쇠기의 설계를 위해서는 유용하다고 하더라도, 동적 하중에 대한 감쇠기의 거동을 모사하는 데는 충분하지 않다. 논문에서는 대용량 20톤 MR 유체 감쇠기의 동적하중에 대한 응답 해석 결과를 이용하여, Bouc-Wen 모델을 기반으로 하는 새로운 역학적 모델을 제안하였다. 이 모델은 MR 유체의 stiction현상과 관성 및 shear thinning 효과를 잘 묘사한다. 또한, 제안된 MR 유체 감쇠기의 동적 모델이 실험 결과와 매우 잘 일치함을 보였다.

  • PDF

Semiactive Control of Cable-Stayed Bridges Using Full-Scale MR Fluid Dampers (실제규모의 자기유변 유체 감쇠기를 이용한 사장교의 진동제어)

  • Jung, Hyung-Jo;Park, Kyu-Sik;Ko, Man-Gi;Lee, In-Won
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • /
    • pp.443-450
    • /
    • 2002
  • 본 논문에서는 미국토목학회(ASCE)의 사장교에 대한 첫번째 벤치마크 문제를 이용하여 제어-구조물 상호작용을 고려한 새로운 반능동 제어 기법을 제안하였다. 이 벤치마크 문제에서는 2003년 완공 예정으로 미국 Missouri 주에 건설 중인 Cape Girardeau 교를 대상 구조물로 고려하였다. Cape Girardeau 교는 New Madrid 지진구역에 위치하고, Mississippi 강을 횡단하는 주요 교량이라는 점 때문에 설계단계에서부터 내진 문제에 대하여 자세하게 고려되었다. 상세 설계 도면을 기반으로 하여 교량의 전체적인 거동 특성을 정확하게 나타낼 수 있는 3차원 모델이 만들어졌고, 사장교의 제어 성능에 관련된 평가 기준이 수립되었다. 본 연구에서는 제어 가능한 유체 감쇠기에 속하는 MR 유체 감쇠기를 제어 장치로 제안하였고, 기존 연구에서 MR 유체 감쇠기를 포함한 구조물의 제어에 효율적이라고 검증된 clipped-optimal 알고리듬을 제어 알고리듬으로 사용하였다. 또한, 실제 규모의 MR 유체 감쇠기 실험 결과를 이용하여 수치해석에 이용할 수 있는 동적 모델을 개발하였다. MR 유체 감쇠기는 제어 가능한 에너지 소산장치이며 구조물에 에너지를 가하지 않기 때문에 제안된 제어 기법은 한정입출력 안정성이 보장된다. 수치해석을 통해, MR 유체 감쇠기를 이용한 반능동 제어 기법이 사장교의 응답 감소에 효과적인 방법임을 증명하였다.

  • PDF

Development of Semi-active Damper by Magneto-Rheological Fluid (자기 유변 유체를 이용한 반능동 감쇠기의 개발)

  • 정병보;권순우;김상화;박영진
    • The Korean Journal of Rheology
    • /
    • v.11 no.2
    • /
    • pp.105-111
    • /
    • 1999
  • Dampers have been used to dissipate energy in mechanical systems. There are several types of dampers such as passive, active, and semi-active damper. Semi-active dampers have higher performance than passive ones and require less power to operate than active ones. Their damping characteristics can be changed properly for varying conditions. In this paper, we investigated the semi-active damper using Magneto-Rheological fluid. Magneto-Rheological fluid, which is one of controllable fluids, changes its damping and rheological characteristics from Newtonian fluid to Bingham fluid as the magnetic field is applied. It has several advantages such as high yield strength, low viscosity, robustness to impurities and wide temperature range of stability. If we designe a semi-active damper by using this material, we can not only design a simply structured damper but also expect rapid response. In this study, we propose several types of semi-active dampers which are designed and manufactured using Magneto-Rheological fluid and some problems encountered during their applications.

  • PDF

Finite Element Analysis for Evaluation of Viscous and Eccentricity Effects on Fluid Added Mass and Damping (유체 부가질량 및 감쇠 결정시 점성 및 편심 영향에 대한 유한요소해석)

  • 구경회;이재한
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.21-27
    • /
    • 2003
  • In general, simple fluid added mass method is used for the seismic and vibration analysis of the immersed structure to consider the fluid-structure interaction effect. Actually, the structural response of the immersed structure can be affected by both the fluid added mass and damping caused by the fluid viscosity. These variables appeared as a consistent matrix form with the coupling terms. In this paper, finite element formula for the inviscid fluid case and viscous fluid case are derived from the linearized Navier Stoke's equations. Using the finite element program developed in this paper, the analyses of fluid added mass and damping for the hexagon core structure of the liquid metal reactor are carried out to investigate the effect of fluid viscosity with variation of the fluid gap and Reynolds number. From the analysis results, it is verified that the viscosity significantly affects the fluid added mass and damping as the fluid gap size decrease. From the analysis results of eccentricity effect on the fluid added mass and damping of the concentric cylinders, the fluid added mass increase as the eccentricity increases, however the fluid damping increases only when the eccentricity is very severe.

Modeling and Theoretical Analysis of Thermodynamic Characteristic of Nano Vibration Absorber (나노 진동 흡수기의 모델링 및 열역학적 특성 해석에 대한 이론적 연구)

  • 문병영;정성원
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.93-99
    • /
    • 2003
  • In this study, new shock absorbing system is proposed by using nano-technology based on the theoretical analysis. The new shock absorbing system is complementary to the hydraulic damper, having a cylinder-piston-orifice construction. Particularly for new shock absorbing system, the hydraulic oil is replaced by a colloidal suspension, which is composed of a porous matrix and a lyophobic fluid. The matrix of the suspension is consisted of porous micro-grains with a special architecture: they present nano-pores serially connected to micro-cavities. Until now, only experimentally qualitative studies of new shock absorbing system have been performed, but the mechanism of energy dissipation has not been clarified. This paper presents a modeling and theoretical analysis of the new shock absorbing system thermodynamics, nono-flows and energy dissipation. Compared with hydraulic system, the new shock absorbing system behaves more efficiently, which absorb a large amount of mechanical energy, without heating. The theoretical computations agree reasonably well with the experimental results. As a result. the proposed new shock absorbing system was proved to be an effective one, which can replace with the conventional one.

An Experimental Study on the Dynamic Characteristics of Damping Flexible Coupling( II ) (유체감쇠 커플링의 동특성에 관한 실험적 연구(II))

  • 김종수;제양규;정재현;전효중
    • Journal of the Korean Society of Marine Engineering
    • /
    • v.18 no.1
    • /
    • pp.23-31
    • /
    • 1994
  • The present works are the experimental results of the study to develope a damping flexible coupling which has a high performance of control for the torsional vibrations of power shafts in a large machinery. The damping flexible coupling is manufactured and is compared for dynamic characteristics with other type coupling which is the Geislinger coupling. The static coefficient of stiffness and the damping coefficient allows the control of excitation frequency through a cam driver. The experimental results obtained from the two couplings are compared with the theoretically results.

  • PDF

Experimental Study for Dynamic Characteristics of Eddy Current Shock Absorber (와전류 충격완충장치의 실험적 동특성 연구)

  • Kwag, Dong-Gi;Hwang, Jai-Hyuk;Bae, Jae-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.12
    • /
    • pp.1089-1094
    • /
    • 2007
  • This paper is concerned with a new concept for the damper without neither a coil spring nor fluid. The new damper concept consists of the permanent magnets and the cylinder of the conducting material. The opposite pole magnets produces the repulsive forces and this is substituted for the coil spring. The relative motion between the magnets and conducting cylinder produces eddy currents thus resulting in the electromagnetic force, which turns out to be the damping force and is substituted for a damping fluid. This damper is called the eddy current damper(ECD). The important advantage of the proposed ECD is that it does not require any damping fluid and any external power and is non-contacting and relatively insensitive to temperature. In the present study, the proposed ECD was constructed and the experiments were performed to investigate its dynamic characteristics. The experiments shows that the proposed ECD has the excellent damping ability.

Application of MR Damper for Vibration Control of Floor Slab (바닥판 구조물의 진동제어를 위한 MR 감쇠기의 적용)

  • Kim, Gee-Cheol;Kwak, Chul-Seung
    • Journal of the Korean Association for Spatial Structures
    • /
    • v.6 no.3
    • /
    • pp.59-67
    • /
    • 2006
  • A conventional passive TMD is only effective when it is tuned properly. In many practical applications, inevitable off-tuning of a TMD occurs because the mass in a building floor could change by moving furnishings, people gathering, etc. when TMDs are offtuned, TMDs their effectiveness is sharply reduced. Moreover, the off-tuned nTMDs can excessively amplify the vibration levels of the primary structures. This paper discusses the application of a new class of MR damper, for the reduction of floor vibrations due to machine and human movements. The STMD introduced uses a MR damper called to semi-active damper to achieve reduction in the floor vibration. Here, the STMD and the groundhook algorithm are applied to a single degree of freedom system representative of building floors. The performance or the STMD is compared to that or the equivalent passive TMD. In addition, the effects of off-tuning due to variations in the mass of the floor system. Comparison of the results demonstrates the efficiency and robustness or STMD with respect to equivalent TMD.

  • PDF

Characteristics of Energy Dissipation in Nano Shock Suspension System Using Silica Gel (세라믹 분말을 이용한 나노 충격 완화 장치의 에너지 소산 효율 특성에 대한 연구)

  • 문병영;정성원
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.17-22
    • /
    • 2003
  • This paper presents an experimental investigation of a reversible colloidal seismic damper, which is statically loaded, The porous matrix is composed from silica gel (labyrinth or central-cavity architecture), coated by organo-silicones substances, in order to achieve a hydrophobic surface. Water is considered as associated lyophobic liquid. Reversible colloidal damper static test rig and the measuring technique of the static hysteresis are described. Influence of the pare and particle diameters, particle architecture and length of the grafted molecule upon the reversible colloidal damper hysteresis is investigated, for distinctive types and mixtures of porous matrices, Variation of the reversible colloidal damper dissipated energy and efficiency with temperature, pressure, is illustrated.

Semi-Active Control System Based on the Experimental Results of the Performance of a Small Scale MR Damper (소형 MR감쇠기의 성능 실험에 기초한 준능동 제어 시스템)

  • Min Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.3
    • /
    • pp.233-238
    • /
    • 2006
  • In this paper, mixed mode magneto-rheological(MR) damper, which is applicable for vibration control of a small scale multi-story structure, is devised. First, the schematic configurations of the shear, flow, and mixed mode MR dampers are described with design constraints and then the analytical models to predict the field-dependent damping forces are derived for each type. Second, an appropriate size of the mixed mode MR damper is manufactured and its field-dependent damping characteristics are evaluated in time domain. Finally, the performance of the manufactured MR damper which is semi-actively applied to a small scale building excited by earthquake load, is numerically evaluated.