• Title, Summary, Keyword: 연속 음성

Search Result 407, Processing Time 0.051 seconds

Performance Evaluation of Large Vocabulary Continuous Speech Recognition System (대어휘 연속음성 인식 시스템의 성능평가)

  • Kim Joo-Gon;Chung Hyun-Yeol
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • /
    • pp.99-102
    • /
    • 2002
  • 본 논문에서는 한국어 대어휘 연속음성 인식 시스템의 성능향상을 위하여 Multi-Pass 탐색 방법을 도입하고, 그 유효성을 확인하고자 한다. 연속음성 인식실험을 위하여, 최근 실험용으로 널리 사용되고 있는 HTK와 Multi-Pass 탐색 방법을 이용한 음성인식 시스템의 비교 실험을 수행한다. 대어휘 연속음성 인식 시스템에 사용한 언어 모델은 ARPA 표준 형식의 단어 N-gram 언어모델로, 1-pass에서는 2-gram 언어모델을, 2-pass 에서는 역방향 3-gram 언어모델을 이용하여 Multi-Pass 탐색 방법으로 인식을 수행한다. 본 논문에서는 Multi-Pass 탐색 방법을 한국어 연속음성인식에 적합하게 구성한 후, 다양한 한국어 음성 데이터 베이스를 이용하여 인식실험을 수행하였다. 그 결과, 전화망을 통하여 수집된 잡음이 포함된 증권거래용 연속음성 데이터 베이스를 이용한 연속음성 인식실험에서 HTK가 $59.50\%$, Multi-Pass 탐색 방법을 이용한 시스템은 $73.31\%$의 인식성능을 나타내어 HTK를 이용한 연속음성 인식률 보다 약 $13\%$의 인식률 향상을 나타내었다.

  • PDF

신경회로망을 이용한 연속음성중 키워드(keyword)인식에 관한 연구

  • 최관선;한민홍
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • /
    • pp.275-281
    • /
    • 1993
  • 본 발표에서는 신경회로망을 이용하여 연속음성중에서 키워드를 인식하는 방법을 설명한다. 연속음성에서 파형소편 및 음절을 식별하는 휴리스틱 알고리즘을 개발하였고, 연속음성을 음절단위로 파형소편 스펙트럼분석(선형예측법)으로 특성치를 추출하였다. 음절의 특성치는 코호넨 신경회로망을 통하여 학습을 시켰으며, 연속음성중 키워드인식은 먼저 음절을 인식하여 단어를 찾고, 인식된 단어가 키워드와 일치하는가를 확인한다. 본 연구의 의의는 파형소편 및 음절식별 알고리즘을 통하여, 크기불변성(Scaling invariance), 시간불변성(Time warping 및 Time-shift invariance), 중복성제거의 문제점을 해결하였고, 신경회로망의 학습을 통하여 화자독립적인 연속음성인식시스템 구축의 기반을 확립한데 있다. 본 음성인식모델은 학교구내 전화번호 안내시스템으로 활용단계에 있으며 전화번호뿐만아니라 주소안내시스템으로도 활용될 예정이다. 또한 자동차 운전보조시스템 및 주행안내시스템의 음성명령에 응용될 수 있는데, 예로 음성명령은 "핸들 좌로 20도", "시청까지 주행", "시청 지도안내"등이 될 수 있다. 현재 자동차 운전보조시스템은 컴퓨터 화면상 모의동작시스템으로 운영되고 있다. 본 음성인식모델은 화자종속시 90%이상, 화자독립시 70%의 인식결과를 보였다.시 90%이상, 화자독립시 70%의 인식결과를 보였다.

  • PDF

A Study on Recognition of Korean Continuous Speech using Discrete Duration CHMM. (이산 시간 제어 CHMM을 이용한 한국어 연속 음성 인식에 관한 연구)

  • 김상범
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • /
    • pp.368-372
    • /
    • 1994
  • 확률적 모델을 이용한 HMM 으로 한국어 연속 음성 인식시스템을 구성하였다. 학습 모델로서는 양자화 DCK가 없는 연속출력 확률밀도를 사용한 연속출력 확률분포 HMM과 과도 구간 및 정상 구간의 시간구조를 충분히 BYGUS할 수 없는 것을 계속시간 확률 파라메터를 추가하여 보완한 이산 지속시간 제어 연속출력 확률분포 HMM을 이용하였다. 인식 알고리즘은 시계열 패턴의 시간축상에서의 비선형 신축을 고려한 에 매칭으로서, 음절의 경계를 자동으로 검출하는 O에을 이용하였다. 실험에서 사용된 연속음성데이타는 4연 숫자음과 연속음성 10문장으로 하였다. 인식 실험 결과 4연 숫자음에서 CHMM은 80.7%, DDCHMM은 92.9%의 인식률을 얻었고, 신문 사설에서 발췌한 연속 음성문장의 경우 CHMM 54.2%, DDCHMM에서는 68.9%을 얻어, 시간장 제어를 고려한 DDCHMM이 CHMM보다 SHB은 인식률을 얻었다.

  • PDF

Performance Evaluation of Acoustic Models According to Differences between Vocabularies in Training and Test Phases of Speech Recognition (음성 인식에서 훈련 및 인식 과정에 사용되는 대상 어휘의 차이에 대한 음향 모델의 성능 평가)

  • 김회린;이항섭;권오욱
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.7
    • /
    • pp.22-27
    • /
    • 1998
  • 본 논문에서는 ETRI에서 개발한 가변 어휘 음성 인식기의 어휘 독립 음향 모델링 방법을 기술하고, 이 모델의 어휘 종속, 어휘 독립 및 어휘적응 성능을 평가하기 위하여 다 양한 고립단어 및 연속음성 DB에 대하여 실험한 결과를 분석하였다. 평가를 위하여 사용한 음성 DB로는 고립단어 음성으로 POW(Phonetically Optimized Words) 3848, PBW(Phonetically Balanced Words) 445, PBW 452, 호텔예약 244 단어, 게임 제어용 단어 등이며, 연속음성으로 일반 문장 음성 및 연속 숫자음을 이용하였다. 성능 분석 결과 40개 음소 모델만으로도 비교적 높은 인식률을 보여 주었지만, 어휘독립의 경우는 어휘종속에 비 하여 성능이 크게 낮았고, 특히 대상 어휘가 숫자음, 알파벳, 연속음 등의 경우에는 POW 데이터나 PBW 데이터만 가지고는 우수한 가변 어휘 음성 인식기를 구현하기에 한계가 있 음을 알 수 있다. 또한, 훈련 데이터의 어휘와 평가데이터의 어휘가 비슷할 경우에는 변이음 모델을 사용하면 음소 모델만을 사용할 경우에 비하여 그 성능이 우수하였지만, 일반적인 어휘독립의 상황에서는 효과가 별로 없음을 알 수 있었다.

  • PDF

A Study on Speech Period and Pitch Detection for Continuous Speech Recognition (연속음성인식을 위한 음성구간과 피치검출에 관한 연구)

  • Kim Tai Suk;Chang jong chil
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.1
    • /
    • pp.56-61
    • /
    • 2005
  • In this thesis, propose speech period and pitch detection for continuous speech recognition. This mathod is distinguishes between vowel and consonant to frame unit in continuous speech, for distinguishable voice. Powerful extraction of speech period could threshold energy make use of input signal to real noise environment. Also algorithm of this method distinguish between vowel and consonant at the same time in voice make use of zero crossing rate and short time energy to extractible speech period.

  • PDF

The Continuous Speech Recognition with Limited word (제한된 단어를 갖는 우리말 연속 음성 인식)

  • 김석동
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • /
    • pp.87-90
    • /
    • 1998
  • 이 논문에서 우리는 대규모 어휘를 갖는 연속 음성 인식을 위한 방법을 제시한다. 우리말은 영어와 구조적으로 달라서 대용량 어휘를 갖는 연속 음성을 인식하기 위한 언어모델을 만들기가 매우 어렵다. 언어 모델을 우리말 문장에 적용하기 위해 신문의 사설을 3-gram을 이용하여 처리하였다. 우리의 인식 시스템을 평가하기 위하여 시스템 공학 연구소에서 제공한 낭독 음성을 대상으로 인식률을 계산하였다. 589개의 문장을 대상으로 총 20명이 발음한 3,156개의 문장에 대하여 남자 92.2%, 여자 87.9%의 인식률을 얻었다. 발음사전은 낭독음성과 신문 사설에서 추출한 10K 크기이며 uniphone의 음성모델을 사용하였다.

  • PDF

Large Vocabulary Continuous Speech Recognition using Stochastic Pronunciatioin Lexicon Modeling (확률 발음사전을 이용한 대어휘 연속음성인식)

  • 윤성진
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • /
    • pp.315-319
    • /
    • 1998
  • 대어휘 연속음성인식을 위한 확률 발음사전 모델에 대해서 제안하였다. 제안된 확률 발음 사전은 연속음성과 같은 자연스런 발성에서 자주 발생되는 단어의 변이를 확률적인 subword-state로 이루어진 HMM으로 모델화 함으로써 단어의 발음 변이를 효과적으로 표현할 수 있으며, 단위 인식 시스템의 성능을 보다 높일 수 있도록 구성되었다. 확률 발음사전의 생성은 음성 자료와 음소 모델을 이용하여 단어 단위의 분할과 학습을 통해서 자동으로 생성되게 됨 음소와 같은 언어학적인 단위뿐만 아니라 PLU 이나 비언어학적인 인식 모델을 이용한 연속음성인식기에도 적용이 가능하다.연속음성인식실험결과 확률 발음사전을 사용함으로써 표준 발음 표기를 사용하는 인식 시스템에 비해 단어 오류율은 39.8%, 문장 오류율은 24.4%의 큰 폭으로 오류율을 감소시킬 수 있었다.

  • PDF

A Korean Speech Recognition Using Fuzzy Rule Base (Fuzzy Rule Base를 이용한 한국어 연속 음성인식)

  • Song, Jeong-Young
    • The Journal of Engineering Research
    • /
    • v.2 no.1
    • /
    • pp.13-21
    • /
    • 1997
  • This paper describes how to represent varations of feature parameters to improve recognition of continuous speech. For speech recognition, feature parameters, which are formant frequencies, pitches, logarithmic energies and zero crossing retes are used in general. But, their values and variations depend on speakers, for example disparities between man and woman, and on their age. It is difficult to decide a priority the value of the variation width. Hence, we try to represent this variation by introducing fuzziness and recognize a continuous speech by fuzzy inference using fuzzy production rules.

  • PDF

Speech Synthesis Based on CVC Speech Segments Extracted from Continuous Speech (연속 음성으로부터 추출한 CVC 음성세그먼트 기반의 음성합성)

  • 김재홍;조관선;이철희
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.7
    • /
    • pp.10-16
    • /
    • 1999
  • In this paper, we propose a concatenation-based speech synthesizer using CVC(consonant-vowel-consonant) speech segments extracted from an undesigned continuous speech corpus. Natural synthetic speech can be generated by a proper modelling of coarticulation effects between phonemes and the use of natural prosodic variations. In general, CVC synthesis unit shows smaller acoustic degradation of speech quality since concatenation points are located in the consonant region and it can properly model the coarticulation of vowels that are effected by surrounding consonants. In this paper, we analyze the characteristics and the number of required synthesis units of 4 types of speech synthesis methods that use CVC synthesis units. Furthermore, we compare the speech quality of the 4 types and propose a new synthesis method based on the most promising type in terms of speech quality and implementability. Then we implement the method using the speech corpus and synthesize various examples. The CVC speech segments that are not in the speech corpus are substituted by demonstrate speech segments. Experiments demonstrate that CVC speech segments extracted from about 100 Mbytes continuous speech corpus can produce high quality synthetic speech.

  • PDF

A Study on the Korean Continuous Speech Recognition using Phonetic Decision Tree-based State Splitting (음소결정트리 상태분할을 이용한 한국어 연속음성인식에 관한 연구)

  • 오세진;황철준;김범국;정호열;정현열
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • /
    • pp.277-280
    • /
    • 2001
  • 본 연구에서는 연속음성인식 시스템의 성능개선을 위한 기초 연구로서 음소결정트리 상태분할과 한국어 음성학적 지식을 이용하여 문맥의존 음향모델의 작성방법을 검토하고. 한국어 연속음성인식에 적용을 소개한다. 음소결정트리 상태분할 알고리즘은 각 노드에서 한국어 음성학적 지식으로 구성된 음소 질의어 집합에 따라 2진 트리로 SSS(Successive State Splitting) 알고리즘에 의해 상태분할 하는 방법으로서 상태분할 후 각 상태를 네트워크로 연결한 구조를 HM-Net(Hidden Markow Network)이라 하며 문맥의존 음향모델로 표현된다. 작성한 문맥의존 음향모델의 유효성을 확인하기 위해 본 연구실의 항공편 예약 문장(YNU200)에 대해 연속음성인식 실험을 수행하였다. 인식실험 결과, 문맥의존 음향모델에 대한 화자독립 연속음성인식률이 기존의 단일 HMM 모델보다 평균적으로 1-pass의 경우 9.9%, 2-pass의 경우 4.1% 향상된 인식률을 보였다. 따라서 문맥의존 음향모델을 작성하는데 음소결정트리 상태분할과 한국어 음성학적 지식이 유효함을 확인하였다.

  • PDF