• Title, Summary, Keyword: 얼음 두께

Search Result 51, Processing Time 0.049 seconds

A Study on the Measurement of River Ice Thickness by Using X-band Scatterometer (X-밴드 산란계를 이용한 하천 얼음 두께 측정에 관한 연구)

  • Han, Hyang-Sun;Kim, Bum-Jun;Lee, Hoon-Yol
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.1
    • /
    • pp.16-22
    • /
    • 2012
  • In this study, we setup a ground-based scatterometer using an antenna of which the center frequency is 9.5 GHz (X-band), and measured radar backscatterings from air/ice and ice/water interfaces to extract ice thickness. Both of air/ice and ice/water interfaces make strong radar backscatterings and so we can clearly identify two peaks in measured data by scatterometer. By using the distance of two peaks and refractive index of ice, we confirmed that it is possible to measure ice thickness. Field survey was performed at the downstream of Jiam River flowing into Chuncheon Lake. We measured radar backscattering from river ice along a survey path and extracted ice thickness. The ice thickness map of the downstream of Jiam River was produced by using kriging which is one of well known interpolation methods. The ice thickness was about 50 cm along the mainstream while ice was thin as 30 ~ 40 cm at a fast-flowing meander. Ice thickness was particularly thinner at some locations than that of surrounding areas even in the mainstream region of constant flow. This was because of impurities in ice or artificially formed refrozen holes after fishing. We expect that this study helps to expand utilization field of X-band SAR and airborne scatterometer system.

Pt(111)과 Ru(0001) 표면에 생성시킨 얼음 층의 연구

  • Kim, Su-Yeon;Gang, Heon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • /
    • pp.395-395
    • /
    • 2010
  • RIS(Reactive Ion Scattering)은 저 에너지 이온 빔을 쏘아 표면을 분석하는 방법이다. 분자 동력학 계산(MD simulation) 결과에 따르면 $Cs^+$이온은 두꺼운 얼음 표면에서 산란이 거의 일어나지 않는다. 본 연구에서는 이와 달리 Pt(111)과 Ru(0001) 표면에 생성시킨 두꺼운 얼음 표면에서 $Cs^+$이온 산란 실험이 가능함을 보였다. 한편, RIS signal은 얼음 층이 쌓인 구조나 두께에 따라 영향을 받는데, Ru(0001)과 Pt(111)의 표면에 생성시킨 crystalline water ice에서 시간과 water ice film의 두께가 RIS signal에 어떠한 영향을 미치는지도 조사하였다.

  • PDF

Ice Formation on the Outer Surface of a Vertical Tube with Inside Refrigerant Boiling (관 내부 냉매비등이 있는 수직관 외부 얼음 형성 연구)

  • Nguyen, Minh Phu;Lee, Geun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.2
    • /
    • pp.129-135
    • /
    • 2011
  • An ice-making model has been developed and analyzed in this study. The effects of the following on the ice formation on the outer surface of a tube in which a refrigerant flows and boils are numerically investigated: thermal resistance of the refrigerant and thermal resistance of the ice formed on the outer surface of the tube. The ice thickness and related variables are analyzed in the case of the refrigerants R22 and R134a by using the expressions for phase-change heat transfer and boiling heat transfer coefficient. Vapor qualities of the refrigerants range from 0 to 0.8. As a result, up to the first 30 min, the internal convection resistance is higher than the thermal resistance of the ice on the external surface of the tube. However, after about 30 min, the thermal resistance of the ice increases remarkably due to the increase in the ice thickness. Thus, the heat flux to the refrigerant decreases, and further, the refrigerant quality and the boiling heat transfer coefficient also decrease. As the heat transfer coefficient of R22 is higher than that of R134a, the mass of the ice formed when R22 is used is higher than that formed when R134a is used.

지구온난화와 북극해항로 여건변화의 추이

  • Nam, Cheong-Do
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • /
    • pp.88-90
    • /
    • 2013
  • 최근 지구온난화의 영향으로 하절기 북극해의 얼음이 예상보다 빨리 녹고 있어 북극해항로의 상용화가 더욱 가속화될 전망이다. 지난해 여름 북극해빙의 크기는 1979년 인공위성관측 이래 최소치를 기록하였으며 또한 다년생 얼음구성비율도 낮아져 대부분이 1년생 얼음으로 대체됨으로써 선박의 운항기간도 점차 늘어나게 되었다.. 이러한 해빙의 가속화가 지속된다면 2030년경에는 북극해의 얼음이 완전히 녹을 것으로 예측되고 있다. 한편 러시아의 NSR 개방이후 비러시아 선박으로서는 2009년 독일 벨루가 선사 소속의 화물선 두 척이 NSR을 통과한 이래 지난 해에는 46척, 금년에는 그 수가 더욱 급격히 늘어나고 있어 앞으로 한.중.일의 NSR 선점경쟁이 더욱 치열해질 것으로 예상된다.

  • PDF

Experimental Study of Natural Convection Adjacent to an Isothermal Vertical Ice Cylinder in Cold Pure Water (저온인 순수물 속의 등온 수직얼음 원기둥에 의해 야기되는 자연대류의 실험적 연구)

  • 유갑종;예용택;박상희
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.5
    • /
    • pp.1737-1746
    • /
    • 1991
  • 본 연구에서는 저온의 순수물 속의 등온 수직원기둥에 의해 야기되는 열전달 특성을 구명함에 있어서 짧은 원기둥 범주에 속하는 종횡비 0.5인 얼음 원기둥을 이용 하여 실험적으로 열전달 특성을 구명하였다. 그리고 전 유동장을 가시화 하였으며, 얼음의 융해율로써 누셀트(Nusselt)수를 측정하여 기존의 결과들과 비교검토하였다.

Part1 : Numerical Code Validation and Quantitative Analyses of Ice Accretion around Airfoils (Part1 : 익형 주위 결빙 예측 코드 검증 및 정량적 분석)

  • Son, Chan-Kyu;Oh, Se-Jong;Yee, Kwan-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.11
    • /
    • pp.1094-1104
    • /
    • 2010
  • In the previous studies, the validation of numerical codes has been conducted based on the qualitative comparison of predicted ice shapes with experiments, which poses a significant limit on the systematic analysis of ice shapes due to the variation of meteorological conditions. In response to this, the numerical code has been quantitatively validated against available experiment for the ice accretion on cylinders and airfoils in the present study. Ice shapes accumulated on the bodies are systematically investigated with respect to various icing parameters. To this end, maximum thickness, heading direction and ice thickness are quantified and expressed in the polar coordinate system for the comparison with other numerical results. By applying the quantitative analysis, similar shapes are intuitively distinguished. The developed numerical code underestimates the ice accretion area and the ice thickness of lower surface. In order to improve the accuracy, further accurate aerodynamic solver is required for the water droplet trajectories.

Prediction of Glaze Ice Accretion on 2D Airfoil (2차원 에어포일의 유리얼음 형상 예측 코드 개발)

  • Son, Chan-Kyu;Oh, Se-Jong;Yee, Kwan-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.8
    • /
    • pp.747-757
    • /
    • 2010
  • The ice accreted on the airfoil is one of the critical drivers that causes the degradation of aerodynamic performance as well as aircraft accidents. Hence, an efficient numerical code to predict the accreted ice shape is crucial for the successful design of de-icing and anti-icing devices. To this end, a numerical code has been developed for the prediction of glaze ice accretion shape on 2D airfoil. Constant Source-Doublet method is used for the purpose of computational efficiency and heat transfer in the icing process is accounted for by Messinger model. The computational results are thoroughly compared against available experiments and other computation codes such as LEWICE and TRAJICE. The direction and thickness of ice horn are shown to yield similar results compared to the experiments and other codes. In addition, the effects of various parameters - temperature, free-stream velocity, liquid water contents, and droplet diameter - on the ice shape are systematically analyzed through parametric studies.

Part2 : Quantitative Analyses of Accumulated Ice Shapes with Various Icing Conditions (Part2 : 착빙 조건 변화에 따른 결빙 형상의 정량적 분석)

  • Son, Chan-Kyu;Oh, Se-Jong;Yee, Kwan-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.11
    • /
    • pp.1105-1114
    • /
    • 2010
  • Ice shapes accumulated on the aircraft surfaces are categorized into rime and glaze ice, which are highly dependent on various parameters such as ambient temperature, liquid water contents (LWC), mean volumetric droplet diameter and freestream velocity. In this study, quantitative analyses on the ice accretion have been attempted in a systematical manner and the key findings are as follows. First, the increase of freestream velocity can cause tremendous change in the ice accumulation such as the growth of ice accretion area, ice heading direction and maximum thickness of ice horn. Second, LWC is found to be linearly proportional to the ice accretion area. Third, the effects of ambient temperature on incoming water mass seem to be relatively small in comparison with LWC and freestream velocity. Finally, it was shown that MVD has only a little influence on ice shapes. However, it may increase the ice accretion area by increasing the droplet impacting range.

Study on Resistance Performance of Icebreaking Cargo Vessel According to Variation of Thickness and Waterline Angle by Using Synthetic Ice (합성얼음을 이용한 얼음의 두께와 수선면각 변화에 따른 쇄빙상선 저항특성 연구)

  • Shin, Byung-Chul;Kim, Moon-Chan;Lee, Seung-Ho;Lee, Seung-Ki
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.2
    • /
    • pp.134-140
    • /
    • 2011
  • The present paper deals with characteristics of resistance performance according to the variation of synthetic ice thickness and hull form. The resistance test has been conducted with pack ice condition in Pusan National University towing tank. Waterline angle has been chosen as a main parameter for the variation of hull form characteristics, which is the most important factor especially in icebreaking cargo vessel. The serial comparisons of resistance test have been done with the variation of hull form parameter as well as with the different thickness of synthetic ice. The different trend of resistance performances with increasing of waterline angle has been shown at each synthetic ice thickness. The present test results is expected to be confirmed by comparing the test results in ice tank in the near future.

Effect of Groundwater Flow on Ice-wall Integrity (얼음벽 형성에 대한 지하수 흐름의 영향)

  • Shin, Hosung;Kim, Jinwook;Lee, Jangguen
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.11
    • /
    • pp.43-55
    • /
    • 2018
  • AGF (Artificial Ground Freezing) method is a temporary ground improvement method which can apply to all types of soil with the purpose of high stiffness and low hydraulic conductivity. However, the groundwater flow and the heterogeneity of the ground increase the uncertainty of the ice-column formation which hinders the reliability of this method. The effects of groundwater flow and layered heterogeneity on ice-wall integrity by AGF method were analyzed using finite element analysis program for a coupled thermo-hydro phenomena in the freezing ground. Groundwater flow changes circular ice-column into elliptical shapes and increases the time required for the formation of ice walls. The previous theoretical formula overestimated the completion time of the ice wall and the critical groundwater velocity by neglecting the thermal interaction between adjacent ice-columns. Numerical results presented the corrected formula and verified the proposed equation for the dimensionless ice-wall completion time. In the layered heterogeneous ground, the thickness of the layer with higher hydraulic conductivity and its relative magnitude were found to be important factors in the ice-wall completion time and critical velocity.