• Title, Summary, Keyword: 얼굴 인식

Search Result 1,398, Processing Time 0.036 seconds

복합 알고리즘을 이용한 실시간 얼굴 검출 및 SVM 인식 기술

  • 박정선;이상웅;정영아;양희덕;유명현
    • Review of KIISC
    • /
    • v.12 no.2
    • /
    • pp.18-24
    • /
    • 2002
  • 얼굴인식 기술은 접촉에 대한 거부감이나 불편함이 없이 친숙하고 편리하게 사용자를 식별하고 인식할 수 있으며, 부가적인 센서 장비가 필요없다는 측면에서 개인 인증 및 보안 시스템으로서의 활용성이 매우 높다. 본 고에서는 여러 가지 장점들을 지닌 얼굴 인식 시스템의 구현 사례를 실시간 얼굴 검출 기술과 특징 추출 기술, 인식 기술로 구분하여 소개한다. 개발된 시스템은 얼굴 검출을 위해서 색상과 에지 성분을 이용하는 복합 알고리즘을 적용하여 실시간 얼굴 탐지를 가능하게 하였고, 추출된 사용자의 고유 얼굴 정보는 최신 인식 기법의 하나인 Support Vector Machine으로 분류, 인식된다. 또한 시스템의 성능을 테스트하고, 실용화 가능성을 모색하기 위하여 하드웨어 임베디드 시스템의 설계 및 구현 과정에 대하여 소개한다. 조명 및 환경 변화에 따른 시스템의 성능 변화를 객관적으로 검증하기 위하여 다양한 변화 조건을 고려한 한국인 표준 얼굴 데이터베이스를 구축하였고, 이 데이터베이스를 기반으로 체계적인 시스템의 성능 테스트를 수행하였다.

딥러닝 기반 얼굴 검출, 랜드마크 검출 및 얼굴 인식 기술 연구 동향

  • Hwang, Won-Jun
    • Broadcasting and Media Magazine
    • /
    • v.22 no.4
    • /
    • pp.41-49
    • /
    • 2017
  • 본 논문에서는 최근 각광받고 있는 Convolutional Neural Network(CNN)과 같은 딥러닝 기반의 얼굴 인식 연구 동향을 살펴 보고자 한다. 얼굴 인식은 입력 영상이 들어왔을 때 자동으로 누구인지 알아내는 알고리즘으로 크게 얼굴 검출, 얼굴 랜드마크 검출 및 얼굴 특징 추출로 나누어진다. 본 논문에서는 얼굴 검출, 랜드마크 검출 및 얼굴 특징 추출에 특화된 딥러닝 알고리즘을 하나씩 살펴보고 이들이 어떻게 발전해 왔는지를 확인하고자 한다. 특히, 딥러닝 기반 얼굴 인식 알고리즘들은 딥러닝 기반 물체 인식의 발전 방향과 유사하게 진행되어 오다가 최근에는 얼굴 인식에 특화된 딥러닝 아키텍처 형태로 발전하고 있다. 어떤 방향이 얼굴 인식에 더 도움이 될지에 대해서도 확인하고 실제로 어떤 문제를 해결하고 있는지 확인하고자 한다.

Emotion Recognition of User using 2D Face Image in the Mobile Robot (이동로봇에서의 2D얼굴 영상을 이용한 사용자의 감정인식)

  • Lee, Dong-Hun;Seo, Sang-Uk;Go, Gwang-Eun;Sim, Gwi-Bo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • /
    • pp.131-134
    • /
    • 2006
  • 본 논문에서는 가정용 로봇 및 서비스 로봇과 같은 이동로봇에서 사용자의 감정을 인식하는 방법중 한가지인 얼굴영상을 이용한 감정인식 방법을 제안한다. 얼굴영상인식을 위하여 얼굴의 여러 가지 특징(눈썹, 눈, 코, 입)의 움직임 및 위치를 이용하며, 이동로봇에서 움직이는 사용자를 인식하기 위한 움직임 추적 알고리즘을 구현하고, 획득된 사용자의 영상에서 얼굴영역 검출 알고리즘을 사용하여 얼굴 영역을 제외한 손과 배경 영상의 피부색은 제거한다. 검출된 얼굴영역의 거리에 따른 영상 확대 및 축소, 얼굴 각도에 따른 영상 회전변환 등의 정규화 작업을 거친 후 이동 로봇에서는 항상 고정된 크기의 얼굴 영상을 획득 할 수 있도록 한다. 또한 기존의 특징점 추출이나 히스토그램을 이용한 감정인식 방법을 혼합하여 인간의 감성 인식 시스템을 모방한 로봇에서의 감정인식을 수행한다. 본 논문에서는 이러한 다중 특징점 추출 방식을 통하여 이동로봇에서의 얼굴 영상을 이용한 사용자의 감정인식 시스템을 제안한다.

  • PDF

Face Recognition Using View-based EigenSpaces (시점 기반 고유공간을 이용한 얼굴 인식)

  • 김일정;차의영
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.458-460
    • /
    • 1998
  • 본 논문은 주성분 분석으로 시점 기반 고유얼굴(view-based eigenface)을 생성하고, 그에 기반한 얼굴 인식을 수행하고자 한다. 주성분 분석을 통한 고유얼굴 생성은 얼굴 인식의 어려운 문제 중 하나인 특징 선택과 추출이라는 문제를 해결해 준다. 또한 얼굴 표정이나 방향의 변화에도 인식률이 저하되는 것을 방지할 수 있다. 얼굴 영상을 특징공간(고유공간)으로 변환할 때, 원 얼굴영상의 정보를 최대한으로 나타낼 수 있는 최적의 고유치 개수 선택은 얼굴 데이터베이스의 크기와 인식 속도에 영향을 끼친다. 따라서 본 논문에서는 고유치 개수를 고유치의 누적기여율을 이용해서 구한다. 이는 64$\times$64(=4096)차원의 원 얼굴 영상을 5~7차원으로 표현 가능하게 하였다. 그리고, 각 얼굴 방향에 따라 특징공간을 분리해서 생성함으로써 얼굴 방향의 변화에 따라 오인식률을 줄였다. 축소된 차원과 분리된 특징공간은 메모리 사용과 인식속도의 향상에 기여한다. 본 논문에서 얼굴의 인식은 Mahalanobis distance와 재구성 오차율을 고려해서 이루어졌다. 실험은 개인당 세가지 다른 방향을 가지는 얼굴 영상을 이용하여 이루어졌고, 실험결과, 약 93%의 인식률을 보여주었다.

  • PDF

SVM Based Facial Expression Recognition for Expression Control of an Avatar in Real Time (실시간 아바타 표정 제어를 위한 SVM 기반 실시간 얼굴표정 인식)

  • Shin, Ki-Han;Chun, Jun-Chul;Min, Kyong-Pil
    • 한국HCI학회:학술대회논문집
    • /
    • /
    • pp.1057-1062
    • /
    • 2007
  • 얼굴표정 인식은 심리학 연구, 얼굴 애니메이션 합성, 로봇공학, HCI(Human Computer Interaction) 등 다양한 분야에서 중요성이 증가하고 있다. 얼굴표정은 사람의 감정 표현, 관심의 정도와 같은 사회적 상호작용에 있어서 중요한 정보를 제공한다. 얼굴표정 인식은 크게 정지영상을 이용한 방법과 동영상을 이용한 방법으로 나눌 수 있다. 정지영상을 이용할 경우에는 처리량이 적어 속도가 빠르다는 장점이 있지만 얼굴의 변화가 클 경우 매칭, 정합에 의한 인식이 어렵다는 단점이 있다. 동영상을 이용한 얼굴표정 인식 방법은 신경망, Optical Flow, HMM(Hidden Markov Models) 등의 방법을 이용하여 사용자의 표정 변화를 연속적으로 처리할 수 있어 실시간으로 컴퓨터와의 상호작용에 유용하다. 그러나 정지영상에 비해 처리량이 많고 학습이나 데이터베이스 구축을 위한 많은 데이터가 필요하다는 단점이 있다. 본 논문에서 제안하는 실시간 얼굴표정 인식 시스템은 얼굴영역 검출, 얼굴 특징 검출, 얼굴표정 분류, 아바타 제어의 네 가지 과정으로 구성된다. 웹캠을 통하여 입력된 얼굴영상에 대하여 정확한 얼굴영역을 검출하기 위하여 히스토그램 평활화와 참조 화이트(Reference White) 기법을 적용, HT 컬러모델과 PCA(Principle Component Analysis) 변환을 이용하여 얼굴영역을 검출한다. 검출된 얼굴영역에서 얼굴의 기하학적 정보를 이용하여 얼굴의 특징요소의 후보영역을 결정하고 각 특징점들에 대한 템플릿 매칭과 에지를 검출하여 얼굴표정 인식에 필요한 특징을 추출한다. 각각의 검출된 특징점들에 대하여 Optical Flow알고리즘을 적용한 움직임 정보로부터 특징 벡터를 획득한다. 이렇게 획득한 특징 벡터를 SVM(Support Vector Machine)을 이용하여 얼굴표정을 분류하였으며 추출된 얼굴의 특징에 의하여 인식된 얼굴표정을 아바타로 표현하였다.

  • PDF

Illumination-Robust Face Recognition based on Illumination-Separated Eigenfaces (조명분리 고유얼굴에 기반한 조명에 강인한 얼굴 인식)

  • Seol, Tae-In;Chung, Sun-Tae;Cho, Seong-Won
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.2
    • /
    • pp.115-124
    • /
    • 2009
  • The popular eigenfaces-based face recognition among proposed face recognition methods utilizes the eigenfaces obtained from applying PCA to a training face image set. Thus, it may not achieve a reliable performance under illumination environments different from that of training face images. In this paper, we propose an illumination-separate eigenfaces-based face recognition method, which excludes the effects of illumination as much as possible. The proposed method utilizes the illumination-separate eigenfaces which is obtained by orthogonal decomposition of the eigenface space of face model image set with respect to the constructed face illumination subspace. Through experiments, it is shown that the proposed face recognition method based on the illumination-separate eigenfaces performs more robustly under various illumination environments than the conventional eigenfaces-based face recognition method.

A Face Recognition System using Eigenfaces : Performance Analysis (고유얼굴을 이용한 얼굴 인식 시스템: 성능분석)

  • Kim Young-Lae;Wang Bo-Hyeun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • /
    • pp.273-276
    • /
    • 2005
  • 본 논문은 고유얼굴 방법을 이용한 얼굴인식 시스템의 성능을 분석하였다. 제안한 고유얼굴을 이용한 얼굴인식 방법은 훈련집합의 얼굴 이미지 사이의 중요한 변화를 가지고 있는 특징공간으로 투영시키면서 이루어진다. 중요한 특징들은 얼굴집합의 고유벡터(주성분)들이기 때문에 고유얼굴이라 한다. 특징 공간으로의 투영은 고유얼굴의 가중치의 합으로 입력얼굴을 기술할 수 있으며, 입력 얼굴의 인식은 훈련집합의 가중치와 입력 영상의 가중치를 비교하면서 이루어진다. 본 논문에서는 제안된 방법의 검증을 위해서 Harvard 데이터베이스를 이용하였으며, 시스템의 성능 분석을 위하여 조명에 대한 인식성능의 변화, 사용한 고유얼굴의 수에 대한 인식률의 변화, 전처리를 통하여 얻을 수 있는 인식률의 변화, 인식 거부 곡선을 통하여 시스템의 적용 가능성에 대한 실험을 수행하여 분석한다.

  • PDF

Face Recognition Algorithm using Laplacian Filter and Neural Network (라플라시안 필터와 신경망을 이용한 얼굴인식 알고리즘)

  • Lee, Hee-Yeol;Lee, Seung-Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • /
    • pp.708-711
    • /
    • 2016
  • 일반적인 얼굴인식 시스템에서는 얼굴표현과 얼굴분류 과정을 통하여 얼굴인식을 수행한다. 얼굴표현 방법으로는 LBP(Local Binary Pattern) 방법이 많이 사용되고 있다. 얼굴분류 방법으로는 신경망을 이용하여 미리 학습을 시켜놓기 때문에 수행시간이 매우 짧은 신경망 방법이 많이 사용되고 있다. 이때 얼굴표현 과정에서 LBP를 사용한 후 신경망을 사용하여 얼굴분류를 수행하면 인식률이 낮고 학습시간이 오래 걸리는 문제점이 있다. 따라서 본 논문에서는 신경망을 이용하여 얼굴 인식 과정을 수행하기 적합한 얼굴 표현 과정인 라플라시안 필터를 이용한 알고리즘을 제안한다. LBP와 신경망을 이용한 얼굴인식 과정과 본 논문에서 제안한 얼굴인식 과정을 비교분석한 실험결과, 본 논문에서 제안한 방법이 학습에 걸리는 시간과 인식률이 우수함을 보였다.

A Study on Background Learning for face recognition (얼굴인식을 위한 배경학습에 관한 연구)

  • Park Dong-hee;Park Ho-sik;Seol Jeung-bo;Son Dong-ju;Bea Cheol-soo;Ra Sang-dong
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • /
    • pp.343-346
    • /
    • 2004
  • 본 논문에서는 고유얼굴 특성과 배경에 기반한 얼굴인식 기술을 제안한다. PCA를 이용한 얼굴 인식은 학습영역과 실험영역으로 나뉘는데, 학습영역에서 고유얼굴을 생성시키고 모든 학습영역을 이 얼굴 공간에 투영시켜 몇 개의 성분값을 저장한다. 그 후 각각의 사랑마다 저장된 성분들의 평균을 대표값으로 가지고 유클리디안 거리를 비교하여 얼굴을 인식하는 것이다. 하지만, 복잡한 배경에 있는 얼굴들을 인식할 때 EFR 방법은 얼굴인식에는 강하지만, 단정으로 조영과 환경변화에 민감하게 반응한다. 복잡한 배경에서 얼굴인식을 위해 배경 패턴을 학습하며, 배경영역은 배경패턴으로부터 생성되어 얼굴영역과 함께 얼굴 인식을 위하여 사용된다. 본 논문에서 제안한 방법이 EFR 방법보다 성능과 복잡한 배경하에서 매우 좋은 곁과를 나타냄을 확인할 수 있었다.

  • PDF

A Face Recognition System using Eigenfaces: Performance Analysis (고유얼굴을 이용한 얼굴 인식 시스템: 성능분석)

  • Kim, Young-Lae;Wang, Bo-Hyeun
    • Journal of Korean Institute of Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.400-405
    • /
    • 2005
  • This paper analyzes the performance of a face recognition algorithm using the eigenfaces method. In the absence of robust personal recognition schemes, a biometric recognition system has essentially researched to improve their shortcomings. A face recognition system in biometries is widely researched in the field of computer vision and pattern recognition, since it is possible to comprehend intuitively our faces. The proposed system projects facial images onto a feature space that effectively expresses the significant variations among known facial images. The significant features are known as 'eigenfaces', because they are the eigenvectors(principal components) of the set of faces. The projection operation characterizes an individual face by a weighted sum of the eigenface features, and to recognize a particular face it is necessary only to compare these weights to those of known individuals. In order to analyze the performance of the system, we develop a face recognition system by using Harvard database in Harvard Robotics Laboratory. We present the recognition rate according to variations on the lighting condition, numbers of the employed eigenfaces, and existence of a pre-processing step. Finally, we construct a rejection curve in order to investigate the practicability of the recognition method using the eigenfaces.