• Title, Summary, Keyword: 양자화 모델

Search Result 167, Processing Time 0.051 seconds

Robust estimation of HMM parameters Based on the State-Dependent Source-Quantization for Speech Recognition (상태의존 소스 양자화에 기반한 음성인식을 위한 은닉 마르코프 모델 파라미터의 견고한 추정)

  • 최환진;박재득
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.66-75
    • /
    • 1998
  • 최근 음성인식을 위한 대표적인 방법으로써 은닉 마르코프 모델이 사용되고 있으며, 이러한 방법은 음성의 특성을 잘 표현하도록 하는 음향적인 모델링 방법에 따라서 성능이 좌우된다. 본 논문에서는 상태에서의 출력확률은 견고히 추정하기 위한 방법으로 상태에서 의 출력활률을 소스들의 분포와 그들의 빈도로 가중한 출력분포로 표시하는 상태 의존 소스 양자화 모델링 방법을 제안한다. 이 방법은 한 상태 내에서 특징 파라미터들이 유사한 특성 을 가지며, 그들의 변이가 다른 상태에 있는 특징 파라미터들에 비해서 작다는 사실에 기반 한다. 실험결과에 의하면, 제안된 방법이 기존의 baseline시스템보다 단어 인식율의 경우는 2.7%, 문장 인식율의 경우 3.6%의 향상을 보였다. 이러한 결과로부터 제안된 SDSQ-DHMM이 인식율 향상면에서 유효하며, HMM에 있어서 상태별 출력확률의 견고한 추정을 위한 대안으로 사용될 수 있을 것으로 판단된다.

  • PDF

Model-based Fault Diagnosis Using Quantized Vibration Signals (양자화된 진동신호를 이용한 모델기반 고장진단)

  • Kim, Do-Hyun;Choi, Yeon-Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • /
    • pp.279-284
    • /
    • 2005
  • Knowledge based fault diagnosis has a limitation in determining the cause and scheme for the fault, because it detects faults from signal pattern only Therefore, model-based fault diagnosis is requested to determine the fault by analyzing output of the equipment from its dynamic model. This research shows a method how to devise the automaton of system as a model for normal and faulty condition through the reduction of handling data by quantization of vibration signals and the example which is concerning to the bearing of ATM. The developed model based fault diagnosis was applied to detect the faulty bearing of ATM, which results.

  • PDF

Acceleration of CNN Model Using Neural Network Compression and its Performance Evaluation on Embedded Boards (임베디드 보드에서의 인공신경망 압축을 이용한 CNN 모델의 가속 및 성능 검증)

  • Moon, Hyeon-Cheol;Lee, Ho-Young;Kim, Jae-Gon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • /
    • pp.44-45
    • /
    • 2019
  • 최근 CNN 등 인공신경망은 최근 이미지 분류, 객체 인식, 자연어 처리 등 다양한 분야에서 뛰어난 성능을 보이고 있다. 그러나, 대부분의 분야에서 보다 더 높은 성능을 얻기 위해 사용한 인공신경망 모델들은 파라미터 수 및 연산량 등이 방대하여, 모바일 및 IoT 디바이스 같은 연산량이나 메모리가 제한된 환경에서 추론하기에는 제한적이다. 따라서 연산량 및 모델 파라미터 수를 압축하기 위한 딥러닝 경량화 알고리즘이 연구되고 있다. 본 논문에서는 임베디트 보드에서의 압축된 CNN 모델의 성능을 검증한다. 인공지능 지원 맞춤형 칩인 QCS605 를 내장한 임베디드 보드에서 카메라로 입력한 영상에 대해서 원 CNN 모델과 압축된 CNN 모델의 분류 성능과 동작속도 비교 분석한다. 본 논문의 실험에서는 CNN 모델로 MobileNetV2, VGG16 을 사용했으며, 주어진 모델에서 가지치기(pruning) 기법, 양자화, 행렬 분해 등의 인공신경망 압축 기술을 적용하였을 때 원래의 모델 대비 추론 시간 및 분류의 정확도 성능을 분석하고 인공신경망 압축 기술의 유용성을 확인하였다.

  • PDF

Quanrum Ballistic Transport in a Two-Dimensional Electron Gas (2차원 전자개스에서 양자 탄동적 수송현상)

  • 최점수;정문성
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.2
    • /
    • pp.224-229
    • /
    • 1995
  • 쌍곡선 모델을 사용하여 미시 통로죔을 통과하는 2차원 전자들의 양자 탄동적 수송현상을 연구하였다. 통로죔은 타원좌표계($\alpha$, $\beta$)에서 $\beta$=$\beta$o, $\pi$-$\beta$o로 주어지는 두 쌍곡선으로 기술하였다. 양자화된 88컨덕턴스 G는 타원좌표계에서 주어진 슈뢰딩거 방정식과 쌍곡선 경계조건을 만족하는 짝 매튜 함수를 이용하여 계산하였다. 그 결과는 채널수 Nc는 통로죔 폭 W뿐만 아니라 곡률 관련좌표 $\beta$o에 의존함을 나타내었다. 또한 곡률에 의존하는 터널링도 양자화된 G의 그래프의 모양을 나타내는 중요한 요소임을 나타내 주었다. 고정된 통로폭에서 Nc가 일정한 $\beta$o영역에서는 $\beta$o의 연속적 변화에 G는 연속적으로 변화하였지만 $\beta$o가 크게 변화할 때는 Nc가 변화하여 G는 불연속적으로 변화하였다. 만일 터널링이 거의 허용이 안되는 $\beta$o의 영역에서는 G는 계단식의 변화만 보여주었다.

  • PDF

Blind Watermarking Using HVS and Wavelet Transform (HVS 모델과 웨이블릿 변환을 이용한 블라인드 워터마킹)

  • 주상현;이선화
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.11C
    • /
    • pp.1169-1176
    • /
    • 2003
  • In this paper, we propose a blind watermarking that embeds watermarks into wavelet middle frequency subbands using human visual system. Wavelet middle frequency pairs(MFP) show similar distortion against general image processing attacks such as compression and filtering. So the quantization between MFPs is more robust than conventional methods that directly quantize DWT coefficients. We use a noise visibility function(NVF) to obtain a good visual quality This is able to preserve embedding positions after many attacks. Our experimental results show that the proposed scheme is robust to various image processing such as JPEG, while preserving good visual quality above 44㏈.

Generation of Korean Intonation using Vector Quantization (벡터 양자화를 이용한 한국어 억양 곡선 생성)

  • An, Hye-Sun;Kim, Hyung-Soon
    • Annual Conference on Human and Language Technology
    • /
    • /
    • pp.209-212
    • /
    • 2001
  • 본 논문에서는 text-to-speech 시스템에서 사용할 억양 모델을 위해 벡터 양자화(vector quantization) 방식을 이용한다. 어절 경계강도(break index)는 세단계로 분류하였고, CART(Classification And Regression Tree)를 사용하여 어절 경계강도의 예측 규칙을 생성하였다. 예측된 어절 경계강도를 바탕으로 운율구를 예측하였으며 운율구는 다섯 개의 억양 패턴으로 분류하였다. 하나의 운율구는 정점(peak)의 시간축, 주파수축 값과 이를 기준으로 한 앞, 뒤 기울기를 추출하여 네 개의 파라미터로 단순화하였다. 운율구에 대해서 먼저 운율구가 문장의 끝일 경우와 아닐 경우로 분류하고, 억양 패턴 다섯 개로 분류하여. 모두 10개의 운율구 set으로 나누었다. 그리고 네 개의 파라미터를 가지고 있는 운율구의 억양 패턴을 벡터 양자화 방식을 이용하여 분류(clusteing)하였다 운율의 변화가 두드러지는 조사와 어미는 12 point의 기본주파수 값을 추출하고 벡터 양자화하였다. 운율구와 조사 어미의 codebook index는 문장에 대한 특징 변수 값을 추출하고 CART를 사용하여 예측하였다. 합성할 때에는 입력 tort에 대해서 운율구의 억양 파라미터를 추정한 다음, 조사와 어미의 12 point 기본주파수 값을 추정하여 전체 억양 곡선을 생성하였고 본 연구실에서 제작한 음성합성기를 통해 합성하였다.

  • PDF

Adaptive Digital Watermarking using Stochastic Image Modeling Based on Wavelet Transform Domain (웨이브릿 변환 영역에서 스토케스틱 영상 모델을 이용한 적응 디지털 워터마킹)

  • 김현천;권기룡;김종진
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.3
    • /
    • pp.508-517
    • /
    • 2003
  • This paper presents perceptual model with a stochastic multiresolution characteristic that can be applied with watermark embedding in the biorthogonal wavelet domain. The perceptual model with adaptive watermarking algorithm embeds at the texture and edge region for more strongly embedded watermark by the SSQ. The watermark embedding is based on the computation of a NVF that has local image properties. This method uses non- stationary Gaussian and stationary Generalized Gaussian models because watermark has noise properties. The particularities of embedding in the stationary GG model use shape parameter and variance of each subband regions in multiresolution. To estimate the shape parameter, we use a moment matching method. Non-stationary Gaussian model uses the local mean and variance of each subband. The experiment results of simulation were found to be excellent invisibility and robustness. Experiments of such distortion are executed by Stirmark 3.1 benchmark test.

  • PDF

Rate-Distortion Model for HEVC Quadtree Coding (HEVC 쿼드트리 부호화를 위한 율-왜곡 모델)

  • Lee, Bumshik;Kim, Munchurl
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • /
    • pp.169-172
    • /
    • 2011
  • 최근 ISO/IEC의 MPEG과 ITU-T의 VCEG이 JCT-VC (Joint Collaborative Team for Video Coding)를 구성하여 HEVC (High Efficiency Video Coding) 차세대 비디오 압축 표준 제정을 위한 작업을 진행 중이다. 과거 압축률이 가장 좋은 것으로 알려진 H.264/AVC 보다 최대 50%까지 부호화 효율 향상을 목표로 하고 있다. HEVC는 H.264/AVC와는 상이한 부호화 구조를 채택하고 있고 작은 크기의 영상뿐만 아니라 크기가 큰 영상까지도 효율적으로 부호화할 수 있도록 설계되고 있다. 예측 및 변환 부호화 과정이 계층적 쿼드트리 구조를 가지며, 특히 변환 부호화는 작은 크기의 변환 블록으로부터 $32{\times}32$ 크기의 변환 블록까지 크게 확장되어 계층적 변환 구조를 이루며 부호화하도록 되어 있다. 본 논문에서는 기존 코덱과는 상이한 부호화 구조를 갖는 쿼드트리 부호화 기반 HEVC 코덱 표준을 위한 율-왜곡 (Rate-Distortion) 모델을 제안한다. 기존의 코덱에서는 부호화되는 기본 단위가 $16{\times}16$로 일정하고, 변환 및 양자화되는 블록의 크기 역시 $4{\times}4$또는 $8{\times}8$ 크기 단위로 그 블록의 크기가 작을 뿐만 아니라 고정된 크기를 사용한다. 따라서 단일 확률 모형을 사용하여 율-왜곡 모델을 만들었으며, 그 정확도 역시 비교적 정확한 결과를 얻었다. 그러나 HEVC에서는 계층적 가변 블록 크기를 갖는 기본 부호화, 예측 및 변환/양자화 기법을 사용하기 때문에 기존의 단일 모델로는 정확한 율-왜곡 모델을 만들어 내기 어렵다. 제안하는 방법은 HEVC의 기본 단위인 CU (Coding Unit)별로 독립적인 확률 모형을 사용하여 율-왜곡모델을 사용하는 것으로 CU의 크기가 가변적이고 CU 내의 텍스처 역시 크기에 따라 매우 다른 특성을 가지고 있기 때문에 단일 모델을 사용하는 것보다 매우 효율적인 것을 실험을 통하여 확인하였다.

  • PDF

Loop Pilfer based on DCT (DCT를 이용한 루프필터)

  • Shin, Il-Hong;Lee, Yung-Lyul;Park, Hyun-Wook
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • /
    • pp.733-736
    • /
    • 2002
  • 손실압축을 사용하는 대부분의 표준 동영상 압축방법은 양자화에 의한 블록화 현상이 생긴다. 이 현상을 없애주고 비트율을 줄여주기 위해서 루프필터링이 사용된다. 본 논문은 DCT 계수를 사용하여 수평과 수직으로 블록화 현상을 제거하고 H.26L 의 테스트 모델인 TML-9 의 루프필터와의 성능 비교를 하였다. PSNR은 비슷하고 제안한 루프필터의 속도는 평균 60%정도 빨라졌다.

  • PDF

Adaptive Skin Segmentation based on Region Histogram of Color Quantization Map (칼라 양자화 맵의 영역 히스토그램에 기반한 조명 적응적 피부색 영역 분할)

  • Cho, Seong-Sik;Bae, Jung-Tae;Lee, Seong-Whan
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.1
    • /
    • pp.54-61
    • /
    • 2009
  • This paper proposes a skin segmentation method based on region histograms of the color quantization map. First, we make a quantization map of the image using the JSEG algorithm and detect the skin pixel. For the skin region detection, the similar neighboring regions are set by its similarity of the size and location between the previous frame and the present frame from the each region of the color quantization map. Then we compare the similarity of histogram between the color distributions of each quantized region and the skin color model using the histogram distance. We select the skin region by the threshold value calculated automatically. The skin model is updated by the skin color information from the selected result. The proposed algorithm was compared with previous algorithms on the ECHO database and the continuous images captured under time varying illumination for adaptation test. Our approach shows better performance than previous approaches on skin color segmentation and adaptation to varying illumination.