• Title, Summary, Keyword: 앙상블 유량예측

Search Result 27, Processing Time 0.043 seconds

A Study on the Influence of Prediction and Scenario Periods for the Reliability of Ensemble Streamflow Prediction (예측 및 시나리오 기간이 앙상블 유량예측의 신뢰도에 미치는 영향 검토)

  • Kang, Tae-Ho;Kim, Chung-Soo;Kim, Nam-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • /
    • pp.1279-1283
    • /
    • 2010
  • 미국의 경우 1994년 발생한 대홍수(Great Flood)에 대해 사건조사를 수행하면서 예측에 포함되는 불확실성 정도를 제공하지 못하는 확정적 예측의 위험성 및 확률유량예측에 대한 필요성이 부각되었으며, 앙상블 유량예측(Ensemble Streamflow Prediction, ESP) 기법을 활용한 확률유량예측 방안에 대해 지속적으로 연구가 수행되고 있다. 국내에서도 확률예측에 대한 필요성이 인식되면서 기존 국외 연구사례를 토대로 국내 환경에 적용 가능한 방안에 대한 연구가 진행되었으며, 중장기 앙상블 유량예측의 경우 현업에서 다양한 형태로 활용되고 있다. 앙상블 유량예측의 기본이론은 예측시점의 초기조건 하에서 예측기간에 발생 가능한 기상 앙상블 시나리오를 수문모형의 입력자료로 사용하여 불확실성 범위를 설명 가능한 유량 앙상블을 모의하는 기법이다. 이러한 이론적 단순함 때문에 쉽게 현업의 유량예측 시스템 내에서 사용할 수 있다는 장점이 있으나, 동시에 기법적 특성으로 인하여 유량예측의 신뢰도가 현업에서 활용되기 어려울 정도로 낮아지는 관계로, 이러한 한계점을 극복하기 위해 그동안 기상자료 및 수문모형으로 인한 불확실성 저감에 대한 연구가 수행되었다. 하지만 예측 및 시나리오 기간의 잘못된 설정으로 기존의 불확실성 저감을 위한 연구의 적용에도 불구하고 앙상블 유량예측의 신뢰도가 오히려 낮아질 수 있으므로, 본 연구는 시나리오 기간에 따른 오차의 양상과 예측기간의 증가에 따른 초기조건의 영향을 분석하여 앙상블 유량예측의 기법적 특성 하에서 신뢰도 높은 예측을 기대할 수 있는 예측 및 시나리오 기간을 제안하였다.

  • PDF

The 5-Year Ensemble Streamflow Prediction Studies in Korea (국내 앙상블 유량예측 연구 5년)

  • Kim, Young-Oh;Jeong, Dae-Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • /
    • pp.267-271
    • /
    • 2004
  • 2000년도 국내에 소개된 앙상블 유량예측은 한반도 유출특성을 고려한 예측시스템 구축을 위해 꾸준한 수정과 보완을 반복하며 약 5년간의 연구가 진행되었다. 앙상블 유량예측의 연구방향은 크게 예측의 정확성을 향상시키기 위한 이론적 인구와 수자원 계획과 관리에 활용될 수 있도록 GUI를 포함한 유량예측시스템을 구축하는 등의 실무적 연구가 함께 진행되고 있다. 앙상블 유량예측의 정확성을 향상시키기 위해 갈수기에 강우-유출모형의 모의능력을 개선해야 하며, 홍수기에는 기상예보를 효율적으로 이용해야 한다는 기본 전략을 수립하였다. 최근 강우-유출모형의 모의능력을 개선하기 위해 신경망 강우-유출모형을 구축하고, 기존 강우-유출모형의 모의결과를 보정하거나, 두개 이상의 모형을 결합함으로서 유량모의능력을 개선하여 갈수기 앙상블 유량예측 정확성을 향상시킬 수 있음을 증명하는 성과를 거둔 바 있다. 향후 앙상블 유량예측의 연구 방향은 기상예보자료의 적극적인 활용에 초점을 맞추고 있다. 최근 ENSO(El Nino Southern Occillation), PDI(Pacific Decadal Idex) 등 다양한 기후정보의 새로운 발견과 GCM 등 기후모형의 급속한 개선으로 기후 예측의 정확도가 높아지고 있는 추세이므로, 이를 이용하여 홍수기 앙상블 유량예측의 정확도 개선을 목표로 인구가 진행될 전망이다.

  • PDF

Long-term Streamflow Prediction for Integrated Real-time Water Management System (통합실시간 물관리 운영시스템을 위한 장기유량예측)

  • Kang Boosik;Rieu Seung Yup;Ko Ick-Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • /
    • pp.1450-1454
    • /
    • 2005
  • 수자원관리에 있어서 미래시구간에 대한 유량예측은 수자원시스템운영자에게 있어서 의사결정에 결정적인 영향을 미치는 가장 중요한 요소 중의 하나이다. 효율적 물배분이나 발전 등의 이수활동을 위해서 최소 월단위 이상의 장기유량예측이 필요하며, 이를 위해서는 강우예측이 선행되어야 하는데, 본 연구에서는 통합 실시간 물관리 운영시스템을 위한 중장기 유량예측을 목표로 방법론을 제시하고자 한다. 중장기 유량예측을 수행하는 대표적인 방법 중의 하나는 앙상블 유량예측(ESP; Ensemble Streamflow Prediction) 기법이다. ESP란 현재의 유역상태를 초기조건으로 사용하고 과거의 온도나 강수 등의 시계열앙상블을 모형입력으로 이용해서 강우-유출모형을 통하여 유출량을 예측하는 기법이다. ESP는 결국 현재의 유역상태와 유역에서의 과거강우관측기록, 미래강우예측에 대한 정보를 조합하여 그에 따른 유출앙상블을 생산해 내게 된다. 유출앙상블은 각 앙상블 트레이스가 갖게 되는 가중치에 따라 확률분포를 달리 갖게 되고 경우에 따라서는 유량으로부터 2차적으로 유도되는 변수들의 확률분포로 전이되기도 한다. 기존의 ESP 이론은 미국 NWS의 범주형 확률예보를 근간으로 하고 있어, 이를 국내 환경에 그대로 적용시키기에 어려움이 있어 왔다. 따라서 본 연구에서는 국내 기상청의 월간 강수전망을 이용하고, 이러한 정보의 특성에 맞는 ESP기법을 제시하였다. 더 나아가 중장기 수자원운영을 위한 일단위 월강수시나리오 구성을 위해서 수치예보와 월강수전망을 조합하여 ESP를 사용하는 기법을 제시하였다.

  • PDF

Short-term streamflow Prediction Using ESP Method in Gumho River Basin (ESP 기법을 적용한 금호강유역의 단기 유량예측)

  • Choi, Hyun Gu;Lee, Eul Rae;Kang, Sin Uk;Lee, Sang Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • /
    • pp.411-411
    • /
    • 2015
  • 유량예측의 가장 주된 목적은 가뭄과 홍수와 같은 수해방지를 위해 통합수자원관리를 수행하는데 있다. 이런 유량예측을 위해 다양한 기법들로 예측이 수행되고 있으며, 예측기간과 필요 정확도에 따라 초단기, 단기, 중 장기 예측 등으로 구분할 수 있다. 유량예측에 사용되는 기법들은 기후변화 시나리오와 같이 예측된 강우자료를 이용하여 유출량을 예측하는 방법이 있으며, 통계적인 방법으로 과거자료들을 활용하여 미래의 유량을 예측하는 방법이 있다. 본 연구에서는 ESP 기법을 이용하여 금호강 유역의 월 단위(30일) 유량을 예측하고자 한다. 앙상블 유량예측기법(ESP; Ensemble Streamflow Prediction)이란 현재의 유역상태를 초기조건으로 사용하고 과거의 온도나 강수 등의 시계열 앙상블을 강우-유출모형에 입력하여 유출량을 앙상블로 예측하는 기법이다. ESP는 결국 현재의 유역상태와 유역에서의 과거 강우 관측기록, 미래 강우예측에 대한 정보를 조합하여 그에 따른 유출 앙상블을 생산해내게 된다. 월 유량을 예측하기 위해서 금호강 유역의 1988년에서 2014년까지 27년간 대구, 영천, 포항 관측소의 기상자료를 수집하였으며, 금호강 표준유역에 해당하는 19개 유역으로 분할하여 모의에 이용하였다. 금호강 유역에 티센망을 적용하여 각 표준유역별로 강우량을 조합하여 2013년까지 모의에 적용하였으며, 이는 과거자료로 사용하였다. 유량예측에 사용되는 강우자료를 생성하기 위해서 26년간 일강우를 이용하였다. 예를 들어 2014년 12월을 예측한다면 11월까지 관측된 유역초기 조건을 가지는 수문모형의 12월 기상입력자료로써 현재 유역에서 발생 가능성이 있는 동일 유역의 과거 1988년부터 2013년까지의 12월 기상자료들을 사용하는 방법이다. 1988년부터 2013년까지 26개 12월 기상자료를 사용하므로 유량예측결과 또한 26개가 주워진다. 계산된 26개의 유량앙상블이 적용된 유역에서 12월에 발생 가능한 유출량의 모음이 된다. 시나리오결과를 수자원관리에 활용하기 위해서 초과확률로 분석하였으며, 이런 분석의 결과는 향후 가뭄과 홍수 같은 수해방지를 위해 수공구조물의 운영에도 활용할 수 있을 것으로 판단된다.

  • PDF

Pre- and Post-Processors of Ensemble Streamflow Prediction System (앙상블 유량예측 시스템의 사전 및 사후처리에 관한 연구)

  • Kang, Tae-Ho;Kim, Young-Oh;Hong, Il-Pyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • /
    • pp.264-268
    • /
    • 2008
  • 미래 발생 가능한 수문 및 기상현상의 예측과정은 지식의 부족과 자연현상의 다양성으로 인해 불확실성을 포함하게 된다. 하지만 많은 예측들은 아직까지 확정적으로 제공되고 있으며, 결과적으로 예측결과의 불확실성 정도를 제공하지 못하고 있다. 앙상블 유량예측(ESP, Ensemble Streamflow Prediction)은 이러한 불확실성을 고려하여 수자원시스템의 의사결정에 있어 중요한 요소 중 하나인 유량예측을 수행할 수 있는 방법이다. 하지만 ESP의 결과는 기상자료, 유역 초기조건, 수문모형의 매개변수, 단순화된 수문모형에 의해 비교적 큰 불확실성을 포함하게 되며, 따라서 실제적인 현업에서의 사용을 위해서는 불확실성 정도를 줄이기 위한 사전 및 사후처리 과정이 요구된다. 본 연구에서는 국내에서 활용 가능한 기후 예보자료를 사용하여 앙상블 유량예측에 적용할 수 있는 사전처리 방안들을 검토하고, 국내에서 사후처리를 위해 적용되었던 최적선형 보정기법에 더해 다양한 기법들을 강우유출모형인 TANK모형의 모의결과 보정에 적용하였다. 사전 및 사후처리를 적용한 결과 기상자료와 유량예측과정에 존재하는 불확실성을 저감시키는 것이 가능하였다. 특히 사전 및 사후 처리가 동시에 적용되었을 경우 그 향상 정도가 단순히 각각의 방법에 의한 향상 정도를 합한 것보다 높게 나타날 수 있음이 확인되었다. 사전 및 사후처리를 동시에 적용한 경우 이수기에는 RPS(Ranked Probability Score) 평가방법 내에서 54%를, 홍수기에는 8%를 향상시키는 것이 가능하였다.

  • PDF

Uncertainty assessment of ensemble streamflow prediction method (앙상블 유량예측기법의 불확실성 평가)

  • Kim, Seon-Ho;Kang, Shin-Uk;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.6
    • /
    • pp.523-533
    • /
    • 2018
  • The objective of this study is to analyze uncertainties of ensemble-based streamflow prediction method for model parameters and input data. ESP (Ensemble Streamflow Prediction) and BAYES-ESP (Bayesian-ESP) based on ABCD rainfall-runoff model were selected as streamflow prediction method. GLUE (Generalized Likelihood Uncertainty Estimation) was applied for the analysis of parameter uncertainty. The analysis of input uncertainty was performed according to the duration of meteorological scenarios for ESP. The result showed that parameter uncertainty was much more significant than input uncertainty for the ensemble-based streamflow prediction. It also indicated that the duration of observed meteorological data was appropriate to using more than 20 years. And the BAYES-ESP was effective to reduce uncertainty of ESP method. It is concluded that this analysis is meaningful for elaborating characteristics of ESP method and error factors of ensemble-based streamflow prediction method.

Improvement of streamflow forecast using a Bayesian inference approach (베이지안 기법을 통한 유량예측 정확도 개선)

  • Seo, Seung Beom;Kim, Young-Oh;Kang, Shin-Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • /
    • pp.303-303
    • /
    • 2018
  • 안정적인 수자원 운용을 위해서는 정확한 유량예측 기술이 필요하다. 본 연구에서는 유량예측 정확도의 개선을 위해 베이지안 추론(Bayesian inference) 기법과 앙상블 유량 예측(Ensemble Streamflow Prediction, ESP) 기법의 결합을 통한 새로운 유량예측 기법(Bayesian ESP)을 제안하였다. ESP를 통한 유량 예보 앙상블은 베이지안 추론의 사전정보로 활용되며, 관측 유량과 ESP 전망 결과의 선형관계를 통해 우도함수가 추정된다. 우도함수는 관측 유량이 존재하는 과거 기간에 대한 ESP를 수행한 후 예보 시점의 관측 유량(concurrent observed flow)과 선행 관측 유량(lagged observed flow)과의 다중선형회귀 모형을 통해 추정된다. 사전정보와 우도함수는 정규분포로 가정되며, 따라서 최종 유량예측인 사후정보 역시 정규분포함수로 산정되게 된다. Bayesian ESP은 ESP에서 발생하는 강우-유출모형 오차의 개선을 통해 수문예측의 정확도를 개선하게 되며 정규분포함수로 최종 결과가 산정되므로 확률예보 형태의 수문 전망도 가능하다. 본 기법을 전국 35개 댐 유역에 시범적용을 한 결과, 모든 유역에서 기존 ESP 기법 대비 수문예측 정확도의 개선을 가져왔으며, 우도함수 추정에 있어 선행 유량의 포함 여부가 수문 예측 정확도의 추가적인 개선을 가져왔다. 본 기법은 주간 예보부터 계절 예보까지 탄력적으로 구축이 가능하며 적용 결과 리드 타임이 길어질수록 예측 능력이 감소되었지만 전체 구간에 있어서 Bayesian ESP 기법이 가장 우수한 예측 정확도를 보여주었다.

  • PDF

Improvement of the Ensemble Streamflow Prediction System Using Optimal Linear Correction (최적선형보정을 이용한 앙상블 유량예측 시스템의 개선)

  • Jeong, Dae-Il;Lee, Jae-Kyoung;Kim, Young-Oh
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.6
    • /
    • pp.471-483
    • /
    • 2005
  • A monthly Ensemble Streamflow Prediction (ESP) system was developed by applying a daily rainfall-runoff model known as the Streamflow Synthesis and Reservoir Regulation (SSARR) model to the Han, Nakdong, and Seomjin River basins in Korea. This study first assesses the accuracy of the averaged monthly runoffs simulated by SSARR for the 3 basins and proposes some improvements. The study found that the SSARR modeling of the Han and Nakdong River basins tended to significantly underestimate the actual runoff levels and the modeling of the Seomjin River basinshowed a large error variance. However, by implementing optimal linear correction (OLC), the accuracy of the SSARR model was considerably improved in predicting averaged monthly runoffs of the Han and Nakdong River basins. This improvement was not seen in the modeling of the Seomjin River basin. In addition, the ESP system was applied to forecast probabilistic runoff forecasts one month in advance for the 3 river basins from 1998 to 2003. Considerably improvement was also achieved with OLC in probabilistic forecasting accuracy for the Han and Nakdong River basins, but not in that of the Seomjin River basin.

Uncertainty Analysis for the Probabilistic Flood Forecasting (확률론적 홍수예측을 위한 불확실성 분석)

  • Lee, Kyung-Tae;Kim, Young-Oh;Kang, Tae-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • /
    • pp.71-71
    • /
    • 2012
  • 현재 전 세계적으로 극한강우의 발생빈도가 점차 높아지고 있으며 홍수량 또한 강도가 커지고 있는 것이 현실이다. 하지만 과거의 홍수발생 빈도에 따라 설계된 홍수방어시설들이 점차 한계를 보이고 있으므로 이를 대비하기위한 구조적 대책뿐만 아니라 홍수피해 발생 가능지역에 사전 예경보를 시행하는 비구조적 대책마련 또한 필요하다. 기존의 홍수예측은 확정적인 하나의 유량예측값만을 제공함으로써 신속하고 편리하였지만 이에 대한 불확실성이 큰 경우 예상치 못한 큰 인적 물적 피해를 가져올 수 있다. 이처럼 확률론적 홍수예측의 필요성이 대두되어 지면서 유럽이나 미국등 선진국에서는 EFFS(European Flood Forecasting System)과 NWSRFS(National Water Service River Forecast System)같이 이미 확률론적 홍수예측에 대한 연구 및 기술개발이 활발하게 진행되어지고 있다. 하지만 홍수예측의 확률론적 접근에 있어서는 많은 불확실성들이 내포되어 있으므로 예측시스템에서 생성된 앙상블 유량예측 결과의 신뢰도 분석과 올바른 불확실성 정보의 제공이 필요하다. 본 연구는 확률론적 홍수예측 방법을 국내에 적용시켜서 기상청의 예측시스템 KLAPS(Korea Local Analysis and Prediction System), MAPLE(McGill Algorithm for Precipitation Nowcasting by Lagrangian Extrapolation), UM(Unified Model) 그리고 MOGREPS(Met Office Global Regional Ensemble Prediction System)으로부터 생성된 기상앙상블을 현재 국토해양부 홍수통제소에서 사용하고 있는 강우-유출모형인 저류함수모형(Storage Function Method)의 입력 자료로 사용한다. 확률론적 홍수예측에서 오는 불확실성을 분석하기 위해서 첫 번째로 제공되는 기상예측 시스템의 시 공간적 스케일 및 대상유역의 공간특성에 따라 어떠한 형태로 전파되어지는지를 분석하였다. 두 번째는 각각의 예측시스템들이 선행기간(Lead time)에 따라 불확실성의 특성이 어떻게 나타나게 되는지를 확인하였다. 이러한 불확실성의 특성을 정확하게 파악하게 된다면 예측에 있어서 현재 갖고 있는 문제점들로부터 개선해 나가야 할 방향을 제시해주어 향후연구에 유용하게 활용될 수 있을 것이다.

  • PDF

Ensemble Daily Streamflow Forecast Using Two-step Daily Precipitation Interpolation (일강우 내삽을 이용한 일유량 시뮬레이션 및 앙상블 유량 발생)

  • Hwang, Yeon-Sang;Heo, Jun-Haeng;Jung, Young-Hun
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.3
    • /
    • pp.209-220
    • /
    • 2011
  • Input uncertainty is one of the major sources of uncertainty in hydrologic modeling. In this paper, first, three alternate rainfall inputs generated by different interpolation schemes were used to see the impact on a distributed watershed model. Later, the residuals of precipitation interpolations were tested as a source of ensemble streamflow generation in two river basins in the U.S. Using the Monte Carlo parameter search, the relationship between input and parameter uncertainty was also categorized to see sensitivity of the parameters to input differences. This analysis is useful not only to find the parameters that need more attention but also to transfer parameters calibrated for station measurement to the simulation using different inputs such as downscaled data from weather generator outputs. Input ensembles that preserves local statistical characteristics are used to generate streamflow ensembles hindcast, and showed that the ensemble sets are capturing the observed steamflow properly. This procedure is especially important to consider input uncertainties in the simulation of streamflow forecast.