• Title, Summary, Keyword: 암모니아

Search Result 2,060, Processing Time 0.04 seconds

한우 난포의 크기에 따른 암모니아 농도와 난자 체외 성숙 시 발생되는 배양액 내 암모니아의 농도와 배 발달

  • 이제협;김소섭;최석화;박민철;박윤미;박용수;김재명;박흠대
    • Proceedings of the KSAR Conference
    • /
    • /
    • pp.246-246
    • /
    • 2004
  • 암모니아는 murine과 sheep의 난자의 체외 배양 시 배 발달과 착상, 태아 발달에 영향을 미친다고 보고되어져 있다. 본 연구는 한우 난포의 크기에 따른 암모니아 농도 측정과 체외 성숙 시간에 따라 발생되는 암모니아의 농도가 배 발달율에 미치는 영향을 검토하였다. 도축장 유래 한우 난소의 직경(3 ㎜∼30 ㎜)난포에서 난포액을 채취하였으며, 그리고 각각의 체외 성숙 시간에 따라 배양액을 회수하였다. 암모니아 농도 측정은 ammonia Kit를 이용 spectrophotometer로 630 ㎚에 측정하였다. (중략)

  • PDF

Measurement of Ammonia Inhibition of Activated Sludge by DHA-INT (DHA-INT를 이용한 활성슬러지의 암모니아 저해도)

  • Lee, Sang-Min;Jung, Jin-Young;Chung, Yun-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.11
    • /
    • pp.1969-1976
    • /
    • 2000
  • It is a time consuming work to identify the inhibition of unknown chemicals or industrial wastewater. Thus it is needed to establish a fast assay tool for finding a toxicant source. Biomass activity and ammonia inhibition were measured by DHAINT method. Ammonia inhibition tests were comprised of total ammonia inhibition and free ammonia inhibition. Those inhibitions were carried out by nitrifier and heterotroph each other with nitrifier inhibitor. The ammonia inhibition was proportional to an amount of total ammonia and pH increase. It meaned that a free ammonia played a key role for ammonia inhibition. however both total ammonia and free ammonia should be considered for an accurate assay of the ammonia inhibition. Nitrifier was more sensitive than heterotroph when the ammonia concentration above 3.000mg/L.

  • PDF

Ammonia removal rate on ammonia loading rates in seawater filtering system using rotating biological contactor (RBC) (회전원판을 이용한 해수 순환여과 시스템에서 암모니아 부하율에 따른 암모니아 제거율)

  • SON Maeng Hyun;JEON Im Gi;CHO Kee Chae;KIM Kang Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.4
    • /
    • pp.367-372
    • /
    • 2000
  • A series of experiment was conducted to investigate the relationship between ammoia removal rate and ammonia loading rates in seawater filtering system using rotating biological contactor (RBC). In this experiment, RBC system was consisted of rotating polyvinyl film disks, which provided $12 m^2$ of total effective surface area in $0.075 m^3$ of volume. $NH_4Cl$ was added by $10{\~}150 g$ as a ammonia nitrogen source to determine ammonia removal rate in RBC system. Relationship between time required for ammonia removal (y: hour) and nitrogen inputted ($x: NH_4-N mg/l$) in RBC system was as followed: $y=3.51+7.76 lnx (r^2=0.936)$. At ammonia concentration $2 mg/l$, it took 10 hour for removal of ammonia in the RBC system. However, at ammonia concentration of $5 and 16.5 mg/l$, it took 16 and 27 hours, respectively. There was a decreasing tencency of an increasing ammonia in the rearing water. Finally, the ammonia removal rate in the RBC system increased with the rise of total ammonia concentration up to $16.5 mg/l$.

  • PDF

Treatment of Malodorous Waste Air Containing Ammonia Using Hybrid System Composed of Photocatalytic Reactor and Biofilter (암모니아 함유 악취폐가스의 광촉매반응공정과 바이오필터로 구성된 하이브리드시스템 처리)

  • Lee, Eun Ju;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.51 no.2
    • /
    • pp.272-278
    • /
    • 2013
  • The hybrid system composed of a photocatalytic reactor and a biofilter was operated under various operating conditions in order to treat malodorous waste air containing ammonia which is a major air pollutant emitted from composting factories and many publicly owned treatment works. Total ammonia removal efficiency of the hybrid system was maintained to be ca. 80% even though its inlet loads were increased at a higher operating stage according to an operating schedule of the hybrid system. The ammonia removal efficiency of photocatalytic reactor was decreased from 65% to 22% as ammonia inlet loads to photocatalytic reactor were increased. In spite of same inlet loads of ammonia to the photocatalytic reactor, the ammonia removal efficiency of photocatalytic reactor with lower ammonia concentration of fed-waste air was higher than that with higher ammonia concentration of fed-waste air. To the contrary, during the first half of the hybrid system operation the ammonia removal efficiency of a biofilter was quite suppressed while, despite of increased ammonia inlet loads, the ammonia removal efficiency of the biofilter was continuously increased to 78% and reached the ammonia removal efficiency similar to what Lee et al. attained. The maximum ammonia elimination capacity of the photocatalytic reactor was observed to be ca. 16 g-N/$m^3$/h. In an incipient stage of hybrid system run, the ammonia elimination capacity of the biofilter showed little sensitivity against ammonia inlet loads to the hybrid system. However, in the 2nd half of its run, the ammonia elimination capacity of the biofilter was increased abruptly in case of high ammonia inlet loads to the hybrid system. In 6th stage of hybrid system run, total ammonia inlet load attained at ca. 80 g-N/$m^3$/h corresponding to 16 g-N/$m^3$/h of ammonia elimination capacity of the photocatalytic reactor. Then, the remaining ammonia inlet load to the 2nd and main process of the biofilter and its elimination capacity was expected and shown to be ca 64 g-N/$m^3$/h and ca 48 g-N/$m^3$/h, respectively. The ammonia elimination capacity of the biofilter was close to 1,200 g-N/$m^3$/day of the maximum elimination capacity of the investigation performed by Kim et al.

Removal of Ammonia-Nitrogen Contained in Landfill Leachate by Ammonia Stripping(I) (암모니아 탈기공정을 이용한 침출수의 암모니아성 질소제거(I))

  • Lee, Byung-Jin;Cho, Soon-Haing
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.10
    • /
    • pp.1893-1904
    • /
    • 2000
  • Nitrogen compounds are one of the major pollutants which cause eutrophication problems of the river or lake and red tides problems of the ocean. Currently available technologies for the removal of nitrogen compounds are mostly biological treatment. However, biological treatment is only effective for the wastewater which contains low concentration of nitrogen compounds. Leachate from solid waste landfill or industrial wastewater which contains high concentration of nitrogen can not be effectively treated by most of the currently available biological treatment technologies. With this connection. the objective of this study is to examine the applicability of ammonia stripping technology for the removal of high concentration of ammonia nitrogen compounds of the leachate from solid waste landfill. It can be concluded that ammonia stripping technology which was placed before the biological treatment process was very effective for the removal of high concentration of ammonium compounds. The chemical cost for the ammonia stripping was 16 percent higher than MLE process, so other methods like sludge recycling are needed for the reduction of operation cost. Further details are discussed in this paper.

  • PDF

Comparison of Ammonia Mass Flow Rate between Two Ammonia Injection Positions in DeNOx system of a Horizontal HRSG (수평형 HRSG의 탈질설비에서 암모니아 분사위치 변동에 따른 암모니아 유량비교)

  • Park, Jae-Hyun;Yoo, Hoseon
    • Plant Journal
    • /
    • v.14 no.4
    • /
    • pp.48-54
    • /
    • 2018
  • As the emission limits for NOx in power generation facilities were strengthened, HRSGs installed in the 1990s became necessary to install additional DeNOx system. However, since there is no space in the HRSG for installing the entire the catalyst and ammonia injection grid, as an alternative, the catalyst was installed inside of the HRSG and the ammonia injection device was installed in the exhaust duct of the gas turbine. Experiments were conducted in horizontal HRSG of Incheon combined cycle power plant. Experimental results show that the ammonia injection method in the gas turbine exhaust duct is 1.2 times higher than the HRSG internal ammonia injection method. However when operating a HRSG for 30 years as its life span, ammonia injection method in the gas turbine exhaust duct is more economical than the cost of new HRSG construction.

  • PDF

Biofilter를 이용한 축산 ${\cdot}$ 분뇨 중의 암모니아와 황화수소의 동시 제거

  • Gang, Yeom-Seok;Hwang, Jae-Ung;Jang, Seok-Jin;Park, Seong-Hun
    • 한국생물공학회:학술대회논문집
    • /
    • /
    • pp.516-519
    • /
    • 2000
  • Lab-scale biofilter was studied for the simultaneous removal of ammonia and hydrogen sulfide in gas mixtures. Compost and polyurethane foam were used as packing materials (50 : 50) and activated sludge from a wastewater treatment plant was innoculated initially. When tested under varying inlet concentrations and empty bed residence time(EBRT), up to 80 ppmv of ammonia and 40 ppmv of hydrogen sulfide could be removed completely at an EBRT of 30 sec. The pH was found to be the key factor governing the biofilter performance.

  • PDF

Ammonia Emission during Postive Aeration on Composting Dairy Manure Amended with Rice Hulls (우분과 왕겨혼합물의 송풍식 통기 퇴비화 과정 중 암모니아 휘산 실험)

  • 홍지형
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.2
    • /
    • pp.55-60
    • /
    • 1999
  • 퇴비호 과정중에 암모니아 휘산은 퇴비 내의 질소성분을 유출시키고 있는 동시에 악취를 발생한다는 측면에서 바람직하지 못하다. 아직까지 암모니아 휘산을 방지할 수 있는 방법은 개발되어 있지 않다. 본 연구에서는 퇴비화 과정에서 온도, 암모니아휘산및 엔탈피의 변화를 분석하였다. 퇴비화 온도가 높을 때는 암모니아 휘산도 많이 발생하였으나 퇴비화 15일 후 온도가 63$^{\circ}C$로 하강함에 따라 암모니아 휘산은 줄어들기 시작하여 온도가 6$0^{\circ}C$이하로 떨어지는 21일부터는 거의 발생하지 않았다. 퇴비화 온도에 의하여 진행과정과 암모니아 휘산의 추이를 추정할 수있었다.

  • PDF

양어장수의 암모니아 제거시 포괄고정화 미생물의 질산화 속도식 도출

  • 이정훈;김병진;서근학
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • /
    • pp.324-325
    • /
    • 2001
  • 총 암모니아성 질소(TAN)은고밀도 양식에서 한계요소로 작용하는 수질인자 중의 하나이다. 생물학적 암모니아 처리공정의 효율적인 설계를 위해서는 생물반응기의 암모니아 제거속도식을 구하여 처리시스템의 최적 용량을 구하여야 한다. 그러나 현재까지 진행된 고정화 미생물을 이용한 암모니아 제거공정에 대한 연구는 고정화 재질의 특성이나 장치의 운전효율에 대한 것으로 속도식에 대한 연구는 부족하다. (중략)

  • PDF

질소순환에서 미생물의 역할

  • 유익동
    • The Microorganisms and Industry
    • /
    • v.14 no.3
    • /
    • pp.23-26
    • /
    • 1988
  • 자연계에 있어서 질소는 대기중의 분자상질소를 비롯하여 초산, 암모니아와 같은 무기태질소, 단백질, 핵산 등의 유기태질소 등 다양한 형태로 존재하며 생물권내에서 흡수, 고정, 대사, 분해되는 등 다양한 순환을 거듭하고 있다. 대기중의 분자상질소는 Rhizobium, Azotobacter, Klebsielle, Clostridium, Blue-green algae 및 광합성세균 등에 의해 고장되어 암모니아의 형태로 환원된다. 한편 대부분의 식물들은 초산이나 암모니아 형태의 질소를 흡수 동화하여 핵산, 단백질을 만들고 이들 구성물은 사후 암모니아로 재분해 된다. 또한 동식물의 유체내지는 배설물들도 각기 분해되어 암모니아의 형태로 변화되는데 이와같은 일련의 질소순환(nitrogen cycle)은 초화세균, 탈질세균 내지는 질소고정균등 대부분의 미생물에 의해 크게 지배를 받고 있다.

  • PDF