• Title/Summary/Keyword: 실규모 화재 실험

Search Result 11, Processing Time 0.382 seconds

Experiment and Analysis of Real-Scale Fire Test for Establishment of Design Fire in Building Structures (건축구조물의 설계화재정립을 위한 실규모 화재실험 및 분석)

  • Seo, Dong-Goo;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • /
    • pp.119-120
    • /
    • 2014
  • In this study, we looked into the method to establish fire growth rate by buildings use for growing fire at the beginning of a fire considering the characteristics of the combustibles in a performance-based design. Actual conditions survey and literature review were carried out for the fire load and exposed surface area of combustibles to establish design fire by domestic building use. As a results, a simplified prediction equation of fire growth rate which depends on fire load and weight of combustibles could be derived by calculating the relation between the fire load and the fire growth rate of an initial fire through investigation of combustibles by domestic building use.Also, as a result of analyzing the placement of combustibles and location of the ignition source, it was found that the influence of the materials of the combustibles and the materials of the combustibles adjacent to the ignition source is big. Though 4 different experiments were carried out for the evaluation, the result of comparing the findings with those of FGR model showed that the fire growth rate was similarly derived.

  • PDF

The Experimental Study for Fire Risk Evaluation of Living Space (생활공간의 화재확대 위험성 평가를 위한 실험적 연구)

  • Yoo, Yong Ho;Kim, Young Ro;Kim, Jung Hyun;Jang, Seung Bae;Chae, Seung Un
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • /
    • pp.87-88
    • /
    • 2013
  • 국내 화재사고중 화재가 가장 많이 발생한 발화지점은 생활공간이며, 이중 침실 및 숙박용 객실이 가장 높은 화재 발생 건수를 보이고 있다. 이처럼 주거시설, 청소년 수련시설 등 생활공간에서의 화재는 화재시 침대 매트리스에 의한 연소확대로 많은 인명 및 재산 피해를 발생시키고 있다. 본 연구에서는 생활공간을 구성요소중 침대 매트리스의 화재확대 위험성에 평가하기 위하여 실규모의 화재실험을 수행하고, 이를 분석하였다. 이러한 실규모 화재실험을 통하여 얻은 결과는 국내 성능적 화재안전 설계를 위한 기본적인 자료로 이용됨과 동시에 주거공간의 화재확산 방지 기술 개발에 기여할 수 있을 것으로 평가된다.

  • PDF

The Study of Fire Behavior Data Base for Fire Spread Prevention (건축물 화재확대방지를 위한 화재특성 DB 구축 연구)

  • Yoo, Yong Ho;Kweon, Oh Sang;Kim, Heung Youl;Kim, Jung Hyun;Jang, Seung Bae
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • /
    • pp.167-168
    • /
    • 2013
  • 국내 화재사고는 2012년도에만 43,247건에 이르며 큰 사회적 비용을 소비하고 있는 위험 요인으로 인식되고 있다. 본 연구에서는 화재 수치해석의 입력자료 획득을 위한 화재 실험을 수행하였으며, 이러한 실규모 화재실험을 통하여 얻은 결과를 데이터 베이스화 하였다. 이는 국내 성능적 화재안전 설계를 위한 기본적인 자료를 제공함과 동시에 화재분야 수치해석의 신뢰성을 높이는데 크게 기여할 수 있을 것이다.

  • PDF

The Study on Real Scale Fire Test of Building Exterior Wall Assemblies (건축물 외장재 수직확산 실대형 화재실험에 관한 연구)

  • Kweon, Oh-Sang;Yoo, Yong-Ho;Kim, Heung-Youl
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • /
    • pp.295-300
    • /
    • 2011
  • 국내 건축물 외장재의 화재위험성 판단을 위한 기준 설정 및 건축물 외장재 수직확산 방지를 위하여 국내 외 실규모 화재실험을 비교 분석하였다. 현재 미국, 영국 등의 화재안전선진국들에서는 NFPA 285, BS 8414-1 등의 실대형 화재 실험을 통하여 외장재의 화재위험성을 판단하고 있다. 이에 본 연구에서는 국내 외 건축물 외장재의 수직화재확산 성능 평가 방법들의 비교 분석을 통하여 국내 실정에 맞는 실대형의 화재실험 방법을 결정하고자 하였다. 본 결과를 통해 건축물의 단위 공간에서 화재가 발생하여 화재의 성장이 플래시오버에 도달한 후 창문 등의 개구부를 통하여 화염이 출화되었을 때 이러한 화염에 의한 건축물 외장재의 수직화재 확산 성능 평가하는 건축물 외장재 수직확산 실대형 화재실험 장비를 개발하고자 하였다.

  • PDF

The Real Fire Test in Bedroom for the Performance Based Fire Design (성능기반 화재안전설계를 위한 침실 공간에서의 실화재 실험)

  • Kim, Hyung-Jun;Kwon, In-Kyu;Kweon, Oh-Sang;Kim, Heung-Youl;Chae, Seung-Un
    • Fire Science and Engineering
    • /
    • v.27 no.6
    • /
    • pp.32-37
    • /
    • 2013
  • For The performance based fire design of the buildings, the fire characteristic such as proceeding and scale of the fire should be figured out but, there is lack of relevant information because of different conditions and difficulties of mock-up test like type of division space, ventilation condition, etc, in buildings. Therefore, in the study, a heal release rate etc, the engineering characteristic data value on the fire is proposed by mock-up fire test for division space in buildings. The mock-up fire test is carried out in a bedroom with 2.4 (L) ${\times}$ 3.6 (W) ${\times}$ 2.4 (H) m model. Initial ignition was started from trash box and the test was carried out for 30 min. As a result of the fire test, flame was broken to outside within 7 min and 50 s after starting the test and the maximum heat release rate was measured as 3,810.6 kW at 9 min and 34 s.

An Experiment Study for Flame Spread Prevention System of Snadwich Panels (샌드위치 패널의 화재확대 방지시스템 개발을 위한 실험적 연구)

  • Shin, Hyun-Joon;In, Ki-Ho;Yoo, Yong-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.6
    • /
    • pp.307-312
    • /
    • 2015
  • The sandwich panel is commonly used domestically because it's less costly and easier to handle. But fires have frequently occurred in buildings employing sandwich panels, such as the fires in Eecheon cold storage and in Gwangju Pyungdong industrial zone. Sandwich panels with steel plates on their surface prevent fire water from penetrating to the fire source, which makes it difficult to extinguish a fire in a timely manner. Toxic gas generated from some insulation material leads to serious loss of life and property. This study is intended to develop an extinguishing system for sandwich panels, thereby reducing the fire risk. Fire water and volume were determined in the wake of the study on the structure of a sandwich panel extinguishing system, and improvement and testing of the fire characteristics of the sandwich panel. Based on such study and test, a fire model test was conducted. Consequently, the sandwich panel with extinguishing system was proven to have a reduced fire risk, compared to traditional or fire retardant panels.

Measurements of the Heat Release Rate and Fire Growth Rate of Combustibles for the Performance-Based Design - Focusing on the Plastic Fire of Commercial Building (성능위주설계를 위한 가연물의 열발생률 및 화재성장률 측정 - 판매시설의 플라스틱 화재를 중심으로 -)

  • Jang, Hyo-Yeon;Nam, Dong-Gun
    • Fire Science and Engineering
    • /
    • v.32 no.6
    • /
    • pp.55-62
    • /
    • 2018
  • To improve the prediction result with enhanced reliability of domestic Performance-Based Design (PBD), actual scale fire tests were carried out on products made of plastics from sales facility combustibles. The commercial buildings were separated into single and multiple combustibles for the experimentation of fire spread caused by the sales shelves where the various combustible materials are displayed. A according to the maximum heat release rate, exposed area and weight of the combustible material, the results revealed a linear relationship of as 93% and 89%. In addition, analysis of the gas concentrations for various combustibles showed that $CO_2$ has a linear relationship, whereas the CO concentration indicated exponential function. These results can be applied to reliable fire source information in PBD of plastic fire source in commercial buildings. This may be applied as fire source information representative of a plastic fire in commercial buildings through additional experiment using the area of the shelf in actual commercial buildings.

A Study on the Urethane Foam Material Characteristics and Appropriate Soil Covering for Mine Reclamation Emergency Action through Atificial Fire Test (인공 화재 실험을 통한 광해방지 응급조치용 우레탄 폼 재료 특성 및 적정 복토에 관한 연구)

  • Kim, Soo Lo;Park, Jay Hyun;Lee, Jin Soo;Yang, In Jae
    • Economic and Environmental Geology
    • /
    • v.53 no.3
    • /
    • pp.287-296
    • /
    • 2020
  • Mine Reclamation Project is being carried out with the aim of ensuring a sustainable green living and helping to develop eco-friendly mines by analyzing, removing and preventing the harmful factors. Mines developed during the japanese colonial period and mining boom period are still not repaired throughout the country, and from these scattered risks, public safety is worth pursuing as a top priority. The project that is close to public safety in the mine recalmation project is an emergency treatment, and the most widely used method is a filling method similar to the ground subsidence prevention. If dangerous mine cavity or tunnels are located in the mountains, charging with existing materials may not be possible, or unreasonable cases may occur, and new methods of technological development are required. Emergency actions should be carried out safely and efficiently to prevent the loss of precious people's lives on the hiking paths adjacent to dangerous mining sites. In these field conditions, urethane foam materials may be an alternative. In this study, the applicability of urethane foam materials in mining was reviewed through overseas cases. It was also tested on the appropriate depth of top soil for the protection of urethane foam materials through forest fire simulation test. The test result show that approximately 15cm of soil covering (recommended 20cm over) was suitable for maintaining the function of foam materials from forest fires.

The Study on Fire Characteristics of Furniture (가구류에 대한 화재 특성 연구)

  • Kweon, Oh-Sang;Yoo, Yong-Ho;Kim, Heung-Youl;Lim, Young-Soo
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • /
    • pp.379-384
    • /
    • 2009
  • 본 연구에서는 다세대 주택에서 발생되는 화재에서 가연물질이 되는 가구류에 대한 화재 특성을 파악하기 위해 단위 가연물에 대한 열방출율(HRR, Heat Release Rate), 연기발생량, 유독가스 발생량 등에 대한 기본 DB를 확보하고자 하였다. 실험에 사용된 단위가연 물에는 침대(매트리스 포함), 장롱, 화장대, 책상, 책장, 소파(3+1인용), TV, 싱크대(찬장포함), 냉장고, 이불(옷가지)등 총 12여종이며, 국제 시험 규격인 ISO 9705 시험법인 중규모 시험 장치(Room Corner Tester)와 10MW 급의 실규모화재실험장치(Large Scale Calorimeter)에서 실험을 진행하였다. 실험결과 냉장고에서 가장 높은 최대 열방출율 약 3051 kW, 장롱에서의 일산화탄소 방출량은 최대 약 3894.2 ppm, 이산화탄소의 방출량은 최대 약 1.8% 로 가장 높게 측정되었다. 이러한 중규모 시험 장치를 통한 단위 품목의 화재특성 DB 작성은 단위구획에서의 화재 확산 예측에 가장 중요한 요소가 될 수 있을 것이다.

  • PDF

A Study on the Application of Bushings Fire Prevent Structure to Prevent Fire Spread of Transformer (변압기의 화재확산 방지를 위한 부싱 방화구조체 적용에 관한 연구)

  • Kim, Do-Hyun;Cho, Nam-Wook;Yoon, Choung-Ho;Park, Pil-Yong;Park, Keun-Sung
    • Fire Science and Engineering
    • /
    • v.31 no.5
    • /
    • pp.53-62
    • /
    • 2017
  • Electric power which is the energy source of economy and industries requires long distance transportation due to regional difference between its production and consumption, and it is supplied through the multi-loop transmission and distribution system. Prior to its actual use, electric power flows through several transformations by voltage transformers in substations depending on the characteristics of each usage, and a transformer has the structure consisting of the main body, winding wire, insulating oil and bushings. A transformer fire that breaks out in substations entails the primary damage that interrupts the power supply to houses and commercial facilities and causes various safety accidents as well as the secondary economic losses. It is considered that causes of such fire include the leak of insulating oil resulting from the destruction of bottom part of bushings, and the chain reaction of fire due to insulating oil that reaches its ignition point within 1 second. The smoke detector and automatic fire extinguishing system are established in order to minimize fire damage, but a difficulty in securing golden time for extinguishing fire due to delay in the operation of detector and release of gas from the extinguishing system has become a problem. Accordingly, this study was carried out according to needs of active mechanism to prevent the spread of fire and block the leak of insulating oil, in accordance with the importance of securing golden time in extinguishing a fire in its early stage. A bushings fireproof structure was developed by applying the high temperature shape retention materials, which are expanded by flame, and mechanical flame cutoff devices. The bushings fireproof structure was installed on the transformer model produced by applying the actual standards of bushings and flange, and the full scale fire test was carried out. It was confirmed that the bushings fireproof structure operated at accurate position and height within 3 seconds from the flame initiation. It is considered that it could block the spread of flame effectively in the event of actual transformer fire.