• Title, Summary, Keyword: 수소생산

Search Result 1,043, Processing Time 0.042 seconds

Effect of Food Waste Mixing on Hydrogen Gas Production in Anaerobic Digestion of Brown Water from Urine Diversion Toilet (소변분리변기오수(Brown water)의 혐기성 처리 시 음식물 쓰레기 혼합에 따른 수소생산 특성)

  • Seong, Chung-Yeol;Yoon, Cho-Hee;Seo, Gyu-Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.12
    • /
    • pp.865-872
    • /
    • 2014
  • The study was conducted to evaluate the effect of addition of food waste in brown water for anaerobic hydrogen production. Batch experiment was carried out to determine appropriate food waste to brown water mixing ratio. Maximum hydrogen yield of $6.92mmol\;H_2/g\;COD_{removed}$ was obtained at 70% food waste and 30% brown water. Semi-pilot scale reactor was operated based on result of batch experiment. Semi-pilot reactor operated, mixing 70% food waste and 30% brown water showed significant increment in butyric acid concentration. B/P (Butyric to propionic acid ratio) which is considered as governing factor for hydrogen production was found high (52.64). Maximum hydrogen yield of $25.03mmol\;H_2/g\;COD_{removed}$ was obtained. Result of this study concluded that mixing of food waste to brown water at appropriate ratio assists in enhanced hydrogen fermentation.

Continuous Bio-hydrogen Production from Food Waste and Waste Activated Sludge (음식물 쓰레기와 폐활성 슬러지를 이용한 생물학적 수소생산 및 수소생산 미생물 군집분석)

  • Kim, Dong-Kun;Lee, Yun-Jie;Kim, Dong-Im;Kim, Ji-Seong;Yu, Myong-Jin;Pak, Dae-Won;Kim, Mi-Sun;Sang, Byoung-In
    • KSBB Journal
    • /
    • v.20 no.6
    • /
    • pp.438-442
    • /
    • 2005
  • Batch experiments were performed to investigate the effects of volumetric mixing ratio(v/v) of two substrates, food wastes(FW) and waste activated sludge(WAS). In batch experiments, optimum mixing ratio for hydrogen production was found at $10{\sim}20$ v/v % addition of WAS. CSTR(Continuous Stirred tank reactor) was operated to investigate the hydrogen productivity and the microbial community under various HRTs and volumetric mixing ratio(v/v) of two substrates. The maximum yield of specific hydrogen production, 140 mL/g VSS, was found at HRT of 2 day and the volumetric mixing ratio of 20:80(WAS:FW). The spatial distribution of hydrogen producing bacteria was observed in anaerobic fermentative reactor using fluorescent in situ hybridization(FISH) method.

Change of Microbial Communities in Fermentative Hydrogen Production at Difference Cultivation pHs (혐기성 수소생산 시 운전 pH 변화에 따른 미생물의 군집 변화)

  • Jun, Yoon-Sun;Lee, Kwan-Yong;Cho, Yoon-A;Lee, Tae-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.12
    • /
    • pp.1239-1244
    • /
    • 2008
  • In this study, PCR-DGGE was conducted to investigate the variations of microbial community according to pH conditions from pH 3 to pH 10 during anaerobic fermentation process of hydrogen production. Maximum hydrogen yield was 1.8 mol $H_2$/mol substrate at pH 5. The microbial growth rate was not proportional to the hydrogen production rate at each pH. Variations of microbial community was observed at each condition from PCR-DGGE experiment of 16s rDNA. Klebsiella was main species of the microbial community. Streptococcus and Clostridium were mainly contributed for hydrogen production.

Hydrogen Production from Fruit Wastes by Immobilized Cells of Enterobacter cloacae VJ-1 (Enterobacter cloacae YJ-1의 고정화세포에 의한 과일 폐기물로부터 수소생산)

  • Lee, Ki-Seok;Huh, Yang-Il;Chung, Seon-Yong;Kang, Chang-Min
    • KSBB Journal
    • /
    • v.20 no.6
    • /
    • pp.447-452
    • /
    • 2005
  • The hydrogen production using immobilized cellsl was conducted using fruit wastewaters at various culture conditions. Three kinds of fruit wastewaters, melon, watermelon and pear were used. Sodium alginate was used as immobilization material. Among them, concentration of reducing sugar which was one of the main components in fruit was the highest at watermelon wastewater, and also hydrogen production was the highest as 2319.2 mL/L in it. Although hydrogen production was not much changed according to sodium alginate concentration, its production was the most at 3%(w/v). As bead size as small, hydrogen production was higher. With inspection of interior, it confirmed that the cell grew well in bead. But the addition of amino acids using as agent for metabolite production had almost no affected on hydrogen productivity. The effective range of $FeSO_4$ addition on hydrogen production were up to 1.2 g/L, and above the concentration, it inhibited the productivity. Organic acids produced during watermelon fermentation were mainly lactic acid, butyric acid, abd acetic acid; and a little of propionic acid.

Minimization of Carbon Monoxide in the High Efficient Catalytic Shift for Fuel Cell Applications (연료전지용 고효율 촉매전이 반응의 일산화탄소 저감)

  • Park, Heon;Kim, Seong-Cheon;Chun, Young-Nam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.5
    • /
    • pp.528-532
    • /
    • 2007
  • The generation of high-purity hydrogen from hydrocarbon fuels is essential for efficient operation of fuel cell. In general, most feasible strategies to generate hydrogen from hydrocarbon fuels consist of a reforming step to generate a mixture of $H_2$, CO, $CO_2$ and $H_2O$(steam) followed by water gas shift(WGS) and CO clean-up steps. The WGS reaction that shifts CO to $CO_2$ and simultaneously produces another mole of $H_2$ was carried out in a two-stage catalytic conversion process involving a high temperature shift(HTS) and a low temperature shift(LTS). In the WGS operation, gas emerges from the reformer is taken through a high temperature shift catalyst to reduce the CO concentration to about $3\sim4%$ followed to about 0.5% via a low temperature shift catalyst. The WGS reactor was designed and tested in this study to produce hydrogen-rich gas with CO to less than 0.5%.

Variations of Hydrogen Production and Microbial Community with Different Nitrogen Concentration During Food Waste Fermentation (음식물쓰레기의 혐기성 소화 시 질소농도에 따른 수소생산 및 미생물 군집변화)

  • Lee, Pul-Eip;Lee, Tae-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.10
    • /
    • pp.672-678
    • /
    • 2014
  • In this study, variations of fermentative hydrogen production and microbial community were investigated with different nitrogen concentration of food waste. Optimum hydrogen production rate was acquired at 200 mg/L nitrogen concentration of the food waste. Which was eqivalent to 83.43 mL/g dry biomass/hr. However, bio-hydrogen production was inhibitedly reduced at over 600 mg/L of nitrogen concentration whereas proportional relation between hydrogen production and B/A ratio were not observed. Most dominant specie of the microbial community analyzed was Clostridium sp. throughout PCR-DGGE analysis of 16S rDNA. It revealed that most contributing microorganism producing hydrogen were Enterococcus faecium partial, Klebsiella pneumoniae strain ND6, Enterobacter sp. NCCP-231, and Clostridium algidicarnis strain E107 in this experiment.

Evaluation Method for the Resistance to Hydrogen Induced Cracking (수소유기균열 저항성 평가방법)

  • 김희진;박영록;유희수
    • Journal of Welding and Joining
    • /
    • v.22 no.2
    • /
    • pp.8-12
    • /
    • 2004
  • 지하로부터 채굴되는 천연가스의 황화수소(H$_2$S)가스 농도가 일정 수준 이상이면 이를 사우어가스(sour gas)분위기라고 하는데, 이러한 부식성 분위기에 강재가 노출되면 강재 내부에 수소유기균열(hydrogen induced cracking)이 발생할 위험성이 높아진다.(중략)

자연계로부터 분리한 strain YJ에 의한 수소생산에 관한 연구

  • Lee, Gi-Seok;Gwak, Gyeong-O;Kim, Seong-Jun;Jeong, Seon-Yong
    • 한국생물공학회:학술대회논문집
    • /
    • /
    • pp.407-410
    • /
    • 2002
  • Hydrogen is considered to be a clean energy because it doesn't generate the global warming gas such as $CO_2$, SOx and NOx, after its combustion. In this study, strain YJ isolated from shore system was used to produce efficiently hydrogen using the various carbon sources such as glucose, sucrose and fructose and its characteristics were investigated in batch cultivation. The maximum hydrogen production shown that glucose, sucrose and fructose were highest obtained at 2, 4 and 5 % concentration, respectively. In addition, we investigated the effect of pH under various conditions as range of initial pH 5.5 to 8.0 pH because growth of strain YJ declined due to produced organic acids. The results showed that the highest production rate of hydrogen was obtained at pH 7.5.

  • PDF

Glucose를 기질로 한 Rhodospirillum rubrum KCTC-1372 의 수소생산

  • Park, Jun-Seong;Lee, Sang-Muk;Park, Gi-Yong;Kim, Cheol-Gyeong;Kim, Nam-Gi
    • 한국생물공학회:학술대회논문집
    • /
    • /
    • pp.277-280
    • /
    • 2000
  • Rhodospirillum rubrum KCTC 1372 produced hydrogen from glucose for first 48hrs culture under the anaerobic photosynthetic conditions, and after 48hrs culture the hydrogen production was decreased by the accumulation of producing organic acids in broth. Only 41% of glucose was consumed and 143mL/day/L hydrogen were produced after 96hrs culture. However the hydrogen production and glucose consumption were substantially increased when the pH of the culture broth were controlled to 6.8-7.2. After 96hrs culture, 450mL/day/L hydrogen were produced, and about 80% glucose was consumed. Specific hydrogen production rate was 48.33mL/hr/g cells under pH not controlled, but 45.42mL/hr/g cells under pH controlled.

  • PDF

Formate Decarboxylation: Initial Step for Hydrogen Production by Enterobacter aerogenes (Enterobacter aerogenes에 의한 수소 생산 초기 단계인 포메이트 탈카복시 반응 연구)

  • Choi, Jinyoung;Jho, Young Choong;Ahn, Ik-Sung
    • Applied Chemistry for Engineering
    • /
    • v.20 no.4
    • /
    • pp.449-452
    • /
    • 2009
  • The absence of Fe, Se, and Mo in a minimal medium prevented the production of hydrogen from the anaerobic culture of Escherichia coli MC4100. Fe, Se, and Mo are known to be cofactors of formate dehydrogenase ($FDH_{II}$) of both E. coli and Enterobacter aerogenes. Hence when these trace elements are absent in the minimal medium, hydrogen production through formate dehydrogenation would be inhibited not only in E. coli but also in E. aerogenes. Hydrogen production by E. aerogenes 413 was delayed when lacking these trace elements. Therefore, it is believed that hydrogen production of E. aerogenes is initiated not by the reoxidation of nicotinamide adenine dinucleotide (NADH) but by formate decarboxylation.