• 제목, 요약, 키워드: 수소생산

Search Result 1,043, Processing Time 0.06 seconds

Carbohydrate Metabolism in Preimplantation Stage Embryos and the Role of Metabolites (착상전 초기 배아에서 탄수화물 대사와 그 대사물의 역할)

  • Cheon, Yong-Pil
    • Development and Reproduction
    • /
    • v.12 no.1
    • /
    • pp.19-30
    • /
    • 2008
  • Proper development of fertilized oocyte to blastocyst is a key step in mammalian development to implantation. During development of preimplantation embryos, the mammalian embryo needs supply the energy substrate for keep viability. Usually mammalian oocyte get substrate especially energy substrate from oviduct and uterus, because it does not store much substrate into cytoplasm during oogenesis. Carbohydrates are known as a main energy substrate for preimplantation stage embryos. Glucose, lactate and pyruvate are essential component in preimplantation embryo culture media and there are stage specific preferences to them. Glucose transporter and $H^+$-monocarboxylate cotransporter are a main mediator for carbohydrate transport and those expression levels are primarily under the control of intrinsic or extrinsic factors like insulin and glucose. Other organic substances, amino acids, lipids and nucleotides are used as energy substance and cellular regulation factor. Though since 1960s, successful development of fertilized embryo to blastocyst has been accomplished with chemically defined medium for example BWW and give rise to normal offspring in mammals, the role of metabolites and the regulation of intermediary metabolism are still poorly understood. Glucose may permit expression of metabolic enzymes and transporters in compacting morula, capable of generating the energy required for blastocyst formation. In addition, it has been suggested that the cytokines can modulate the metabolic rate of carbohydrate in embryos and regulate the preimplantation embryonic development through control the metabolic rate. Recently we showed that lactate can be used as a mediator for preimplantation embryonic development. Those observations indicate that metabolites of carbohydrate are required by the early embryo, not only as an energy source, but also as a key substrate for other regulatory and biosynthetic pathways. In addition metabolites of carbohydrate may involve in cellular activity during development of preimplantation embryos. It is suggested that through these regulation and with other regulation mechanisms, embryo and uterus can prepare the embryo implantation and further development, properly.

  • PDF

Estimation of the Accuracy of Genomic Breeding Value in Hanwoo (Korean Cattle) (한우의 유전체 육종가의 정확도 추정)

  • Lee, Seung Soo;Lee, Seung Hwan;Choi, Tae Jeong;Choy, Yun Ho;Cho, Kwang Hyun;Choi, You Lim;Cho, Yong Min;Kim, Nae Soo;Lee, Jung Jae
    • Journal of Animal Science and Technology
    • /
    • v.55 no.1
    • /
    • pp.13-18
    • /
    • 2013
  • This study was conducted to estimate the Genomic Estimated Breeding Value (GEBV) using Genomic Best Linear Unbiased Prediction (GBLUP) method in Hanwoo (Korean native cattle) population. The result is expected to adapt genomic selection onto the national Hanwoo evaluation system. Carcass weight (CW), eye muscle area (EMA), backfat thickness (BT), and marbling score (MS) were investigated in 552 Hanwoo progeny-tested steers at Livestock Improvement Main Center. Animals were genotyped with Illumina BovineHD BeadChip (777K SNPs). For statistical analysis, Genetic Relationship Matrix (GRM) was formulated on the basis of genotypes and the accuracy of GEBV was estimated with 10-fold Cross-validation method. The accuracies estimated with cross-validation method were between 0.915~0.957. In 534 progeny-tested steers, the maximum difference of GEBV accuracy compared to conventional EBV for CW, EMA, BT, and MS traits were 9.56%, 5.78%, 5.78%, and 4.18% respectively. In 3,674 pedigree traced bulls, maximum increased difference of GEBV for CW, EMA, BT, and MS traits were increased as 13.54%, 6.50%, 6.50%, and 4.31% respectively. This showed that the implementation of genomic pre-selection for candidate calves to test on meat production traits could improve the genetic gain by increasing accuracy and reducing generation interval in Hanwoo genetic evaluation system to select proven bulls.

Expressional Analysis of Superoxide Dismutase in Olive Flounder (Paralichthys olivaceus) against Viral Hemorrhagic Septicemia Virus Infection (Viral hemorrhagic septicemia virus (VHSV) 감염에 대한 넙치 superoxide dismutase(Of-SOD)의 발현분석)

  • Lee, Young Mee;Kim, Jung-Eun;Noh, Jae Koo;Kim, Hyun Chul;Park, Choul-Ji;Park, Jong-Won;Kim, Kyung-Kil;Lee, Jeong-Ho
    • Journal of Life Science
    • /
    • v.24 no.12
    • /
    • pp.1371-1377
    • /
    • 2014
  • Superoxide dismutase is a family of important antioxidant metalloenzymes and catalyzes the dismutation of toxic superoxide anions into dioxygen and hydrogen peroxide. A recent study identified the partial superoxide dismutase (SOD) gene in olive flounder (Paralichthys olivaceus). The same study reported that it strongly induced benzo[a]pyrene and that it was an indicator of aquatic oxidative stress responses. However, its transcriptional response against viral infection has not been investigated. In the present study, the spatial and temporal expression profiles were analyzed to investigate the function of Of-SOD in the antiviral response. The Of-SOD transcripts were ubiquitously detected at various levels in diverse tissues in a real-time PCR. The expression of Of-SOD was significantly higher in the muscles, liver, and brain but extremely low in the stomach and spleen. Following a VHSV challenge, the expression of Of-SOD increased within 3 h in the kidneys and decreased to the original level 2 days postchallenge. In muscle, liver, and brain, Of-SOD mRNA was similarly up-regulated at 3-6 h postchallenge and then decreased to the basal level. Although the expression pattern and induction time differed slightly depending on the tissue, the transcript of Of-SOD consistently increased in the acute infection response, but the expression was low in the chronic response. The expression of Of-SOD was induced after the VHSV infection, and Of-SOD was probably involved in the immune response against the viral challenge. These results suggest that SOD may play important roles in the immune defense system of P. olivaceus and perhaps contribute to the protective effects against oxidative stress in olive flounder.