• Title, Summary, Keyword: 수소생산

Search Result 1,043, Processing Time 0.044 seconds

Development of Hydrogen Production Technology from Coal Gasification (석탄가스화 수소생산 기술개발)

  • Kim, Jae-Sung;Lee, Jong-Min;Kim, Dong-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • /
    • pp.462-465
    • /
    • 2007
  • 석탄가스화 수소생산 기술 분야는 석탄 등의 화석연료를 이용하여 고온, 고압하에서 반응가스(산소, 수증기, 수소)와의 화학적 반응을 통해 생산된 연소성 가스 ($H_2$, CO, $CO_2$ 등)를 전환반응(WGS) 및 분리반응을 거쳐 효율적으로 청정하게 수소를 생산해 내는 기술이다. 전력산업에서 석탄가스화 수소생산은 그 사용 방법(연료전지, 수소 터빈, 분산 이용 등)에 따라 발전시스템의 고효율화를 지향하고, zero-emission을 실현하는 첨단 발전 시스템의 종합 구현을 목표로 하고 있으며, 더불어, 도래하는 수소 경제로의 전이에 대비에 석탄을 이용한 중앙(Central) 수소생산 시스템을 구현하여 이송 및 전환을 통한 지역적 분산 이용을 가능케 하는 종합적인 인프라를 구축하는 기술이다. 본 기술에는 석탄가스화 기술, 수성가스 전환기술, 수소/$CO_2$ 분리기술, 이송용 연료 전환기술 등이 포함된다. 석탄가스화 수소생산 기술은 급등하는 오일 가격과 이의 수입사용 증가에 대응하기 위한 에너지 안보 대책 마련 및 효율 극대화의 필요성과 더불어, 전력산업에서 화력 발전시스템의 궁극적 실현 목표인 고효율, 초청정의 전력생산 시스템의 구현을 가능케 하여, 향후 화석 연료를 이용한 미래 발전 기술을 선도 할 것으로 기대된다. 더불어, 수소 경제로의 전환 시 수소 수요의 급팽창에 대비한 경제적인 대규모 수소생산 기술의 개발이 필요하며, 이에 기술 실현성이 가장 높은 석탄가스화 수소생산 기술의 개발 구현이 요구된다.

  • PDF

Biological Hydrogen Production Processes (생물학적 수소생산 공정)

  • Shin, Jong-Hwan;Park, Tai Hyun
    • Korean Chemical Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.16-22
    • /
    • 2006
  • Biological hydrogen production processes are more environment-friendly and less energy intensive than thermochemical and electrochemical processes. The biological process can be divided into two categories: photosynthetic hydrogen production and hydrogen production by dark fermentation. Photosynthetic process produces hydrogen mainly from water and reduces $CO_2$ simultaneously. Dark fermentation is a dark and anaerobic process that produces hydrogen by fermentative bacteria from organic carbon. The article presents a survey of biological hydrogen production processes.

Dark fermentation for hydrogen production with a new bacterium Enterobacter asburiae SNU-1 (새로운 Enterobacter asburiae SNU-1의 혐기발효에 의한 생물학적 수소생산)

  • 신종환;김미선;심상준;박태현
    • 한국전기화학회:학술대회논문집
    • /
    • /
    • pp.177-186
    • /
    • 2005
  • 미래의 친환경 에너지인 수소에너지 생산을 위해서 생물학적인 수소생산방법에 관한 관심이 증폭되고 있다. 생물학적인 수소생산 방법에는 여러 가지가 있으나 그중 유기물을 혐기발효하여 수소를 생산하는 방법에 관한 연구가 수행되었다. 본 연구에서 혐기성 미생물인 Enterobacter asburiae SNU-1이 쓰레기 매립지 토양에서 분리되어 수소생산 조건의 최적화 실험을 수행하였다. 본 실험에 이용된 미생물의 경우는 기존에 연구 된 적이 없는 새로운 종으로써 다른 미생물과는 다른 특징을 나타내며 수소생산 능력도 뛰어난 것을 알 수 있었다. 미생물을 이용한 수소생산에 영향을 미치는 인자로는 pH, initial glucose concentration 등이 있으며 각각의 조건에서 수소생산량을 비교하였다. 실험 결과 strain SNU-1의 최적 pH는 7이었으며 최적 initial glucose concentration은 25 g/1이다 이와 같은 최적 조건에서 strain SNU-1은 6.87 mmol/l/hr의 productivity를 나타내었다. 또한 다른 미생물과 달리 미생물이 더 이상 자라지 않는 정지기에서 더 많은 수소생산량을 나타내는 특이한 거동을 보이는 것이 관찰되었다.

  • PDF

광합성세균을 이용한 수소생산

  • 김진상
    • Journal of Life Science
    • /
    • v.2 no.3
    • /
    • pp.175-179
    • /
    • 1992
  • 광조사시에 수소를 생산하는 미생물로는 녹조류, 남조류 그리고 광합성세균이 알려져 있으며, 이 중에서 남조류와 광합성세균이 실용적인 수소생산에 유망시되고 있다. 광합성세균은 광학계 II가 결여되어 물분해능이 없으나 유기화합물을 전자공여체로하여 남조보다 훨씬 빠른 속도로 수소를 생산하며, 생산가스는 약간의 이산화탄소 외에는 거의 순수한 수소여서 그대로 연료로 사용할 수 있는 장점을 지닌다. 본고에서는 공합성세균에 의한 수소생생의 연구현황과 문제점에 대해 다루었다. 광합성세균에 의한 수소생산의 실용화를 위해서는 균체의 수소생산성 향상 및 활성의 유지, 원료문제 및 암모니아에 의한 수소 생산의 억제문제, 적합한 배양조개발과 균체의 이용방안 등에 관련된 제분제의 해결이 필요하다. 광합성세균의 수소생산성 향상을 위해서는 자연계로부터 보다 고활성균주의 탐색과 아울러 유전적인 개량이 병행되어야한다.

  • PDF

Two-stage Biological Hydrogen Production form Organic Wastes and Waste-waters and Its Integrated System (유기성 폐기물 및 폐수로부터 2단계 생물학적 수소생산 및 통합화 시스템)

  • Kim, Mi-Sun;Yoon, Y.S.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.1
    • /
    • pp.52-64
    • /
    • 2002
  • 유기성 폐기물을 이용하여 생물학적 수소생산 통합화 시스템 연구를 수행하였다. 통합화 시스템은 유기성폐기물의 전처리, 2단계 혐기발효 및 광합성 배양으로 구성된 생물학적 수소생산 공정, 초임계수 가스화 공정, 생산된 가스의 저장, 분리 및 연료전지를 이용한 전력 생산으로 구성되었다. 실험에 사용된 유기성 폐자원은 식품공장 폐수, 과일폐기물, 하수슬러지이며, 전처리는 폐기물에 따라 열처리 및 물리적 처리를 하였으며, 전처리된 시료는 생물학적 수소생산 공정에 직접 적용되었다. Clostridium butyricum 및 메탄 생성조에서 발생하는 하수슬러지중의 미생물 복합체는 수소생산 혐기 발효공정에 사용되었으며, 광합성 수소생산 미생물인 홍색 비유황 세균은 광합성 배양에 사용되었다. 생물학적 공정에서 발생하는 미생물 슬러지는 초임계수 가스화 공정으로 수소를 발생하였으며, 슬러지 중의 COD를 저하시켰다. 생물학적 공정 및 초임계수 가스화 공정에서 발생하는 수소는 가스탱크에 가입상태로 저장한 후, 95%순도로 분리하였으며, 정제된 수소는 연료전지에 연결하여 전력 생산을 하였다.

Hydrogen Production from hydrocarbon by carbon black decomposition (탄화수소류로부터 카본블랙에 의한 수소생산)

  • Yoon, Suk-Hoon;Han, Gi-Bo;Lee, Jong-Dae;Park, No-Kuk;Ryu, Si-Ok;Lee, Tae-Jin;Yoon, Ki-June
    • 한국신재생에너지학회:학술대회논문집
    • /
    • /
    • pp.638-641
    • /
    • 2005
  • 수소는 자원이 무한하고 청결한 에너지이다. 수소는 무공해 청정 대체연료로 사용될 수 있을 뿐만 아니라 풍부한 자원으로부터 얻을 수 있다. 수소에너지는 물을 분해하여 얻거나 화석연료를 수증기개질 또는 부분산화 시킴으로써 얻을 수가 있다. 수소에너지는 1차 에너지를 변환시켜 얻을 수 있는 2차 에너지로서 환경에 대한 부하가 거의 없어 향후 화석연료를 대체할 수 있는 가장 가능성이 높은 에너지이며, 연료전지의 상용화를 앞두고 있어 중요성이 더욱 증대되고 있다. 수소를 생산하는 방법 중 가장 이상적인 방법으로는 물분해함으로써 수소를 제조하는 방법이 있다. 그러나 물분해에 의한 수소생산은 제조비용이 비싸 경제성이 떨어진다는 점과 수소의 대량생산에 필요한 기술확보가 여의치 않아 어렵다. 그러므로 수소를 저 비용으로 대량 생산할 수 있는 수소 제조 기술의 확보가 선행되어야 할 것이다. 현재 상용화되어 있는 수소제조방법은 거의 석유나 천연가스의 수증기 개질에 의한 수소 제조 방법이다. 그러나 이러한 방법은 유해 환경 물질인 CO나 $CO_2$를 배출하는 단점을 지니고 있다. 이러한 단점을 보완키 위한 수소 제조공정의 대안 중 하나는 탄화수소연료의 수소와 탄소로의 직접분해에 의한 수소생산이다. 이 중 원하는 생성물인 수소 외에 부산물이 카본이 동시에 얻을 수 있는 메탄분해에 의한 수소생산방법은 생산된 수소의 약 15%만 연소시킴으로서 필요한 에너지를 공급할 수 있으며, 동시에 지구온난화의 주범인 CO 또는 $CO_2$가 생성되지 않는 장점이 있다. 하지만 메탄을 분해하기 위해서는 매우 높은 에너지가 필요로 하게 된다. 이에 반해 프로판은 메탄보다 낮은 열원에서 분해할 수 있는 장점을 지니고 있다. 본 연구에서는 메탄보다 분해하기 쉬운 프로판을 직접 분해하여 수소를 생산하고자 하였다. 프로판 직접분해반응는 $500\sim750^{\circ}C$의 온도 범위에서 이루어 졌으며, 촉매로서는 국내에서 생산되는 상용촉매인 카본블랙을 이용하였다.

  • PDF

In situ production of biohydrogen for fuel cell (연료전지로의 직접 공급을 위한 생물학적 수소생산)

  • Shin, Jong-Hwan;Yoon, Jong-Hyun;Park, Tai-Hyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • /
    • pp.470-473
    • /
    • 2006
  • 생물학적 수소생산을 위해 토양으로부터 새로운 균주인 Enterobacter asburiae SNU-1이 분리되었다 이 균주의 경우 다른 균주와는 달리 미생물 생장과 수소생산 phase가 분리되는 특징을 가지고 있다. 이러한 정지기에서의 수소생산은 미생물 내에 존재하는 formate hydrogen lyase를 사응하여 formate 분해에 의해 일어난다. 따라서 본 연구에서는 미생물 생장 phase에서 formate hydrogen lyase가 발현된 미생물을 얻고 이를 formate만 있는 배지에서 수소생산 가능성에 대한 연구를 수행하였다. 앞으로 formate분해를 위한 조건을 최적화한다면 높은 수소생산성을 나타낼 것이라 기대된다. 또한, 이는 formate로부터 미생물촉매를 이용하여 수소를 생산하고 이를 연료전지로 공급하는 생물학적 reformer로써의 이용 가능성을 보여준다.

  • PDF

Microbial hydrogen production: Dark Anaerobic Fermentation and Photo-biological Process (미생물에 의한 수소생산: Dark Anaerobic Fermentation and Photo-biological Process)

  • Kim, Mi-Sun;Baek, Jin-Sook
    • KSBB Journal
    • /
    • v.20 no.6
    • /
    • pp.393-400
    • /
    • 2005
  • Hydrogen($H_2$) as a clean, and renewable energy carrier will be served an important role in the future energy economy. Several biological $H_2$ production processes are known and currently under development, ranging from direct bio-photolysis of water by green algae, indirect bio-photolysis by cyanobacteria including the separated two stage photolysis using the combination of green algae and photosynthetic microorganisms or green algae alone, dark anaerobic fermentation by fermentative bacteria, photo-fermentation by purple bacteria, and water gas shift reaction by photosynthetic or fermentative bacteria. In this paper, biological $H_2$ production processes, that are being explored in fundamental and applied research, are reviewed.

A feedback effect assessment of the routes to hydrogen (수소생산 경로의 평가: 피드백 효과 모델)

  • Kim, Seong-Ho;Kim, Tae-Woon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • /
    • pp.47-50
    • /
    • 2006
  • 현재의 화석연료-기반 사회에서는 지구 온난화와 고유가 추세가 야기하는 경제적 피해, 에너지 안보우려, 세계 평화 위협 등에 자주 노출되고 있는 실정이다. 세계 각국은 이러한 화석연료 에너지원을 대체하는 환경-청정하고 기술-신뢰할 수 있으며 경제-감당할 수 있는 에너지 공급원인 수소를 기반으로 하는 미래의 수소-기반 사회로의 진입에 노력하고 있다. 특히, 청정한 에너지 운반체인 수소의 생산 기술 상업화가 더욱 더 절실히 요구되고 있다. 이 예비 연구에서는 이산화탄소 포획/저장 기술과 결합된 다양한 수소 생산 기술의 정량적인 예비 비교 평가가 수행되었다. 예비적인 비교 평가 기준으로 1) 이산화탄소 배출량: 2) 에너지 이용률; 3) 토지 점유율: 4) 수소 생산비용 등이 고려되었다. 이러한 기준에 따라 수소 생산 기술 가운데 네 가지 예비 기술 대안인 1) 원자력: 2) LNG; 3) 석탄: 4) 태양광 등이 비교되었다. 대안 기술의 비교 평가 체제로 계층 망형 구조-기반 되먹임 모델이 개발되었다. 이러한 수소생산 기술의 우선순위 선정 결과는 개별 대안 기술의 상대적인 장단점 및 기술적인 갭을 정량적으로 인식하는 데에 활용될 수 있다. 그러므로 이 예비 연구는 수소 생산 기술 연구자나 수소 경제 기획자한테 뿐만 아니라 이산화탄소 포획/저장 기술 개발자한테 도움이 되리라 본다.

  • PDF

Optimization of photobiological H2 production using Thiocapsa roseopercisina (광합성 홍색 유황 세균 Thiocapsa roseopercisina에 의한 수소생산 최적화)

  • Kim, Mi-Sun;Lee, Yu-Jin;Lee, Dong-Yeol
    • 한국신재생에너지학회:학술대회논문집
    • /
    • /
    • pp.782-786
    • /
    • 2009
  • Thiocapsa roseopersicina NCIB 8347은 purple sulfur bacteria이며 광합성종속영양 조건에서는 nitrogenase 효소계가 유도되어 질소를 고정하며, 수소를 발생한다. 또한 광합성독립영양 조건에서는 hydrogenase 효소계가 유도되어 3~4개 종류의 특성이 다른 hydrogenase가 membrane에 결합되어 있거나, cytoplasma에 존재하며, 이 중의 일부는 산소농도와 온도의 상승에도 비교적 안정하다. 본 연구에서는 T. roseopersicina NCIB 8347이 광합성종속영양 조건에서 수소를 생산할 수 있는 제반 배양조건을 최적화하고, nitrogenase와 일부 hydrogenase역가를 측정하여 purple non-sulfur bacteria, Rhodobacter sphaeroides KD131의 nitrogenase와 비교하여 수소생산을 최적화하였다. 할로겐램프를 8-9 $Klux/m^2$로 조사할 때와 배양온도 $26{\sim}30^{\circ}C$, 배양시간 72시간에서 균체 성장과 수소생산이 가장 높았다. T. roseopersicina NCIB 8347는 광합성 독립영양, 종속영양 조건에서 모두 성장 할 수 있었다.

  • PDF